UZH-Logo

Maintenance Infos

Activity pattern-dependent long-term potentiation in neocortex and hippocampus of GluA1 (GluR-A) subunit-deficient mice


Frey, M C; Sprengel, R; Nevian, T (2009). Activity pattern-dependent long-term potentiation in neocortex and hippocampus of GluA1 (GluR-A) subunit-deficient mice. Journal of Neuroscience, 29(17):5587-5596.

Abstract

The AMPA receptor subunit GluA1 (GluR-A) has been implicated to be critically involved in the expression of long-term potentiation (LTP) and memory formation. Mice lacking this subunit possess a profound spatial working memory deficit. We investigated the influence of the GluA1 subunit on the expression of LTP in pyramidal neurons of the hippocampus CA1 region and somatosensory cortex layer 2/3 for different cellular LTP protocols in adult mice. We found that the GluA1 subunit was not required for LTP in cortical pyramidal neurons. In contrast, GluA1-dependent LTP expression in CA1 pyramidal neurons was differentially dependent on the LTP induction parameters. Depolarization pairing was exclusively, theta-burst pairing was partially, and spike-timing-dependent plasticity (STDP) was independent of the GluA1 subunit. Spike-timing-dependent LTP required postsynaptic membrane fusion in CA1 pyramidal neurons. We conclude that during LTP induction at the hippocampal CA3-to-CA1 synapse the recruitment of the GluA1 subunit is controlled by particular electrical activity patterns that might reflect specific behavioral states. Furthermore, other LTP expression mechanisms exist that do not require the presence of GluA1. The previously reported spatial working memory deficits in GluA1-lacking mice (Gria1(-/-) mice) together with these results suggest that STDP might be a likely basis for the formation of spatial reference memory whereas it is not required for the rapid formation of spatial working memory where a fast but transient increase of synaptic efficacy might be needed.

The AMPA receptor subunit GluA1 (GluR-A) has been implicated to be critically involved in the expression of long-term potentiation (LTP) and memory formation. Mice lacking this subunit possess a profound spatial working memory deficit. We investigated the influence of the GluA1 subunit on the expression of LTP in pyramidal neurons of the hippocampus CA1 region and somatosensory cortex layer 2/3 for different cellular LTP protocols in adult mice. We found that the GluA1 subunit was not required for LTP in cortical pyramidal neurons. In contrast, GluA1-dependent LTP expression in CA1 pyramidal neurons was differentially dependent on the LTP induction parameters. Depolarization pairing was exclusively, theta-burst pairing was partially, and spike-timing-dependent plasticity (STDP) was independent of the GluA1 subunit. Spike-timing-dependent LTP required postsynaptic membrane fusion in CA1 pyramidal neurons. We conclude that during LTP induction at the hippocampal CA3-to-CA1 synapse the recruitment of the GluA1 subunit is controlled by particular electrical activity patterns that might reflect specific behavioral states. Furthermore, other LTP expression mechanisms exist that do not require the presence of GluA1. The previously reported spatial working memory deficits in GluA1-lacking mice (Gria1(-/-) mice) together with these results suggest that STDP might be a likely basis for the formation of spatial reference memory whereas it is not required for the rapid formation of spatial working memory where a fast but transient increase of synaptic efficacy might be needed.

Citations

19 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

176 downloads since deposited on 19 Jan 2010
32 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute for Regenerative Medicine (IREM)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2009
Deposited On:19 Jan 2010 12:22
Last Modified:16 Aug 2016 10:13
Publisher:Society for Neuroscience
ISSN:0270-6474
Publisher DOI:https://doi.org/10.1523/JNEUROSCI.5314-08.2009
PubMed ID:19403825
Permanent URL: https://doi.org/10.5167/uzh-27462

Download

[img]
Preview
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations