UZH-Logo

Maintenance Infos

The molecular basis of frontotemporal dementia


Neumann, M; Tolnay, M; Mackenzie, I R A (2009). The molecular basis of frontotemporal dementia. Expert Reviews in Molecular Medicine, 11:e23.

Abstract

Frontotemporal dementia (FTD) is a clinical syndrome with a heterogeneous molecular basis. Familial FTD has been linked to mutations in several genes, including those encoding the microtubule-associated protein tau (MAPT), progranulin (GRN), valosin-containing protein (VCP) and charged multivescicular body protein 2B (CHMP2B). The associated neuropathology is characterised by selective degeneration of the frontal and temporal lobes (frontotemporal lobar degeneration, FTLD), usually with the presence of abnormal intracellular protein accumulations. The current classification of FTLD neuropathology is based on the identity of the predominant protein abnormality, in the belief that this most closely reflects the underlying pathogenic process. Major subgroups include those characterised by the pathological tau, TDP-43, intermediate filaments and a group with cellular inclusions composed of an unidentified ubiquitinated protein. This review will focus on the current understanding of the molecular basis of each of the major FTLD subtypes. It is anticipated that this knowledge will provide the basis of future advances in the diagnosis and treatment of FTD.

Frontotemporal dementia (FTD) is a clinical syndrome with a heterogeneous molecular basis. Familial FTD has been linked to mutations in several genes, including those encoding the microtubule-associated protein tau (MAPT), progranulin (GRN), valosin-containing protein (VCP) and charged multivescicular body protein 2B (CHMP2B). The associated neuropathology is characterised by selective degeneration of the frontal and temporal lobes (frontotemporal lobar degeneration, FTLD), usually with the presence of abnormal intracellular protein accumulations. The current classification of FTLD neuropathology is based on the identity of the predominant protein abnormality, in the belief that this most closely reflects the underlying pathogenic process. Major subgroups include those characterised by the pathological tau, TDP-43, intermediate filaments and a group with cellular inclusions composed of an unidentified ubiquitinated protein. This review will focus on the current understanding of the molecular basis of each of the major FTLD subtypes. It is anticipated that this knowledge will provide the basis of future advances in the diagnosis and treatment of FTD.

Citations

35 citations in Web of Science®
42 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

80 downloads since deposited on 30 Jan 2010
16 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:29 July 2009
Deposited On:30 Jan 2010 16:58
Last Modified:05 Apr 2016 13:45
Publisher:Cambridge University Press
ISSN:1462-3994
Additional Information:Copyright: Cambridge University Press
Publisher DOI:10.1017/S1462399409001136
PubMed ID:19638255
Permanent URL: http://doi.org/10.5167/uzh-27482

Download

[img]
Preview
Filetype: PDF
Size: 4MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations