UZH-Logo

Electrogenic Kinetics of a Mammalian Intestinal Type IIb Na+/Pi Cotransporter


Forster, I C; Virkki, L V; Bossi, E; Murer, H; Biber, J (2006). Electrogenic Kinetics of a Mammalian Intestinal Type IIb Na+/Pi Cotransporter. Journal of Membrane Biology, 212(3):177-190.

Abstract

The kinetics of a type IIb Na(+)-coupled inorganic phosphate (Pi) cotransporter (NaPi-IIb) cloned from mouse small intestine were studied using the two-electrode voltage clamp applied to Xenopus oocytes. In the steady state, mouse NaPi-IIb showed a curvilinear I-V relationship, with rate-limiting behavior only for depolarizing potentials. The Pi dose dependence was Michaelian, with an apparent affinity constant for Pi (Km(pi)) of 10 +/- 1 microM: at -60 mV. Unlike for rat NaPi-IIa, (Km(pi)) increased with membrane hyperpolarization, as reported for human NaPi-IIa, flounder NaPi-IIb and zebrafish NaPi-IIb2. The apparent affinity constant for Na(+) (Km(na)) was 23 +/- 1 mM: at -60 mV, and the Na(+) activation was cooperative with a Hill coefficient of approximately 2. Pre-steady-state currents were documented in the absence of Pi and showed a strong dependence on external Na(+). The hyperpolarizing shift of the charge distribution midpoint potential was 65 mV/log[Na]. Approximately half the moveable charge was attributable to the empty carrier. A comparison of the voltage dependence of steady-state Pi-induced current and pre-steady-state charge movement indicated that for -120 mV <or= V <or= 0 mV the voltage dependence of the empty carrier was the main determinant of the curvilinear steady-state cotransport characteristic. External protons partially inhibited NaPi-IIb steady-state activity, independent of the titration of mono- and divalent Pi, and immobilized pre-steady-state charge movements associated with the first Na(+) binding step.

The kinetics of a type IIb Na(+)-coupled inorganic phosphate (Pi) cotransporter (NaPi-IIb) cloned from mouse small intestine were studied using the two-electrode voltage clamp applied to Xenopus oocytes. In the steady state, mouse NaPi-IIb showed a curvilinear I-V relationship, with rate-limiting behavior only for depolarizing potentials. The Pi dose dependence was Michaelian, with an apparent affinity constant for Pi (Km(pi)) of 10 +/- 1 microM: at -60 mV. Unlike for rat NaPi-IIa, (Km(pi)) increased with membrane hyperpolarization, as reported for human NaPi-IIa, flounder NaPi-IIb and zebrafish NaPi-IIb2. The apparent affinity constant for Na(+) (Km(na)) was 23 +/- 1 mM: at -60 mV, and the Na(+) activation was cooperative with a Hill coefficient of approximately 2. Pre-steady-state currents were documented in the absence of Pi and showed a strong dependence on external Na(+). The hyperpolarizing shift of the charge distribution midpoint potential was 65 mV/log[Na]. Approximately half the moveable charge was attributable to the empty carrier. A comparison of the voltage dependence of steady-state Pi-induced current and pre-steady-state charge movement indicated that for -120 mV <or= V <or= 0 mV the voltage dependence of the empty carrier was the main determinant of the curvilinear steady-state cotransport characteristic. External protons partially inhibited NaPi-IIb steady-state activity, independent of the titration of mono- and divalent Pi, and immobilized pre-steady-state charge movements associated with the first Na(+) binding step.

Citations

15 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 21 Jul 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:November 2006
Deposited On:21 Jul 2008 10:57
Last Modified:05 Apr 2016 12:24
Publisher:Springer
ISSN:0022-2631
Publisher DOI:10.1007/s00232-006-0016-3
PubMed ID:17342377
Permanent URL: http://doi.org/10.5167/uzh-2749

Download

[img]Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations