UZH-Logo

Maintenance Infos

The zebrafish, brain-specific, aromatase cyp19a2 is neither expressed nor distributed in a sexually dimorphic manner during sexual differentiation.


Kallivretaki, E; Eggen, R I L; Neuhauss, S C F; Kah, O; Segner, H (2007). The zebrafish, brain-specific, aromatase cyp19a2 is neither expressed nor distributed in a sexually dimorphic manner during sexual differentiation. Developmental Dynamics, 236(11):3155-3166.

Abstract

Differential cyp19 aromatase expression during development leads to sexual dimorphisms in the mammalian brain. Whether this is also true for fish is unknown. The aim of the current study has been to follow the expression of the brain-specific aromatase cyp19a2 in the brains of sexually differentiating zebrafish. To assess the role of cyp19a2 in the zebrafish brain during gonadal differentiation, we used quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry to detect differences in the transcript or protein levels and/or expression pattern in juvenile fish, histology to monitor the gonadal status, and double immunofluorescence with neuronal or radial glial markers to characterize aromatase-positive cells. Our data show that cyp19a2 expression levels during zebrafish sexual differentiation cannot be assigned to a particular sex; the expression pattern in the brain is similar in both sexes and aromatase-positive cells appear to be mostly of radial glial nature. Developmental Dynamics 236:3155-3166, 2007. (c) 2007 Wiley-Liss, Inc.

Differential cyp19 aromatase expression during development leads to sexual dimorphisms in the mammalian brain. Whether this is also true for fish is unknown. The aim of the current study has been to follow the expression of the brain-specific aromatase cyp19a2 in the brains of sexually differentiating zebrafish. To assess the role of cyp19a2 in the zebrafish brain during gonadal differentiation, we used quantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry to detect differences in the transcript or protein levels and/or expression pattern in juvenile fish, histology to monitor the gonadal status, and double immunofluorescence with neuronal or radial glial markers to characterize aromatase-positive cells. Our data show that cyp19a2 expression levels during zebrafish sexual differentiation cannot be assigned to a particular sex; the expression pattern in the brain is similar in both sexes and aromatase-positive cells appear to be mostly of radial glial nature. Developmental Dynamics 236:3155-3166, 2007. (c) 2007 Wiley-Liss, Inc.

Citations

34 citations in Web of Science®
34 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

138 downloads since deposited on 11 Feb 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:15 October 2007
Deposited On:11 Feb 2008 12:14
Last Modified:05 Apr 2016 12:13
Publisher:Wiley-Blackwell
ISSN:1058-8388
Additional Information:The attached file is a preprint (accepted version) of an article published in Dev Dyn 2007, 236(11):3155-3166.
Publisher DOI:10.1002/dvdy.21344
PubMed ID:17937394
Permanent URL: http://doi.org/10.5167/uzh-275

Download

[img]
Preview
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations