UZH-Logo

Influence of decreased solvent permittivity on the structure and magnesium(II)-binding properties of the catalytic domain 5 of a group II intron ribozyme


Furler, M; Knobloch, B; Sigel, R K O (2009). Influence of decreased solvent permittivity on the structure and magnesium(II)-binding properties of the catalytic domain 5 of a group II intron ribozyme. Inorganica Chimica Acta, 362(3):771-776.

Abstract

Although it is well known that the so-called “equivalent solution” or “effective” solvent permittivity (dielectric constant) in proteins and nucleic acids is lower than in bulk water, this fact is commonly neglected in (bioinorganic) studies of such compounds. Using domain 5 of the group II intron ribozyme Sc.ai5γ, we describe here the influence of 1,4-dioxane-d8 on the structure and magnesium(II)-binding properties of this catalytic domain. Applying one- and two-dimensional NMR, we observe distinct structural changes in the functionally important bulge region following a decrease in solvent permittivity. Concomitantly, an increase by a factor of 1.5 in the affinity of Mg2+ towards the individual-binding sites in the catalytic core domain is observed upon addition of 1,4-dioxane-d8. This has led to the detection of a new metal ion coordination site near the GU wobble pair in the catalytic triad. Our results show that solvent permittivity is an important factor in the formation of intrinsic RNA structures and affects their metal ion-binding properties. Hence, solvent permittivity should be taken into account in future studies.

Although it is well known that the so-called “equivalent solution” or “effective” solvent permittivity (dielectric constant) in proteins and nucleic acids is lower than in bulk water, this fact is commonly neglected in (bioinorganic) studies of such compounds. Using domain 5 of the group II intron ribozyme Sc.ai5γ, we describe here the influence of 1,4-dioxane-d8 on the structure and magnesium(II)-binding properties of this catalytic domain. Applying one- and two-dimensional NMR, we observe distinct structural changes in the functionally important bulge region following a decrease in solvent permittivity. Concomitantly, an increase by a factor of 1.5 in the affinity of Mg2+ towards the individual-binding sites in the catalytic core domain is observed upon addition of 1,4-dioxane-d8. This has led to the detection of a new metal ion coordination site near the GU wobble pair in the catalytic triad. Our results show that solvent permittivity is an important factor in the formation of intrinsic RNA structures and affects their metal ion-binding properties. Hence, solvent permittivity should be taken into account in future studies.

Citations

10 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

43 downloads since deposited on 22 Jan 2010
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2009
Deposited On:22 Jan 2010 11:19
Last Modified:05 Apr 2016 13:47
Publisher:Elsevier
ISSN:0020-1693
Publisher DOI:10.1016/j.ica.2008.03.095
Permanent URL: http://doi.org/10.5167/uzh-28049

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 402kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations