UZH-Logo

Maintenance Infos

Desert ants do not acquire and use a three-dimensional vector


Grah, G; Wehner, R; Ronacher, B (2007). Desert ants do not acquire and use a three-dimensional vector. Frontiers in Zoology, 4:12.

Abstract

Background: Desert ants (Cataglyphis fortis) are central place foragers that navigate by means of path integration. This mechanism remains accurate even on three-dimensional itineraries. In this study, we tested three hypotheses concerning the underlying principles of Cataglyphis' orientation in 3-D: (1) Do the ants employ a strictly two-dimensional representation of their itineraries, (2) do they link additional information about ascents and descents to their 2-D home vector, or (3) do they use true 3-D vector navigation? Results: We trained ants to walk routes within channels that included ascents and descents. In choice tests, ants walked on ramps more frequently and at greater lengths if their preceding journey also included vertical components. However, the sequence of ascents and descents, as well as their distance from nest and feeder, were not retraced. Importantly, the animals did not compensate for an enforced vertical deviation from the home vector. Conclusion: We conclude that Cataglyphis fortis essentially represents its environment in a simplified, two-dimensional fashion, with information about vertical path segments being learnt, but independently from their congruence with the actual three-dimensional configuration of the environment. Our findings render the existence of a path integration mechanism that is functional in all three dimensions highly unlikely.

Background: Desert ants (Cataglyphis fortis) are central place foragers that navigate by means of path integration. This mechanism remains accurate even on three-dimensional itineraries. In this study, we tested three hypotheses concerning the underlying principles of Cataglyphis' orientation in 3-D: (1) Do the ants employ a strictly two-dimensional representation of their itineraries, (2) do they link additional information about ascents and descents to their 2-D home vector, or (3) do they use true 3-D vector navigation? Results: We trained ants to walk routes within channels that included ascents and descents. In choice tests, ants walked on ramps more frequently and at greater lengths if their preceding journey also included vertical components. However, the sequence of ascents and descents, as well as their distance from nest and feeder, were not retraced. Importantly, the animals did not compensate for an enforced vertical deviation from the home vector. Conclusion: We conclude that Cataglyphis fortis essentially represents its environment in a simplified, two-dimensional fashion, with information about vertical path segments being learnt, but independently from their congruence with the actual three-dimensional configuration of the environment. Our findings render the existence of a path integration mechanism that is functional in all three dimensions highly unlikely.

Citations

10 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

68 downloads since deposited on 11 Feb 2008
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Zoology (former)
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:3 May 2007
Deposited On:11 Feb 2008 12:14
Last Modified:05 Apr 2016 12:13
Publisher:BioMed Central
ISSN:1742-9994
Additional Information:Free full text article
Publisher DOI:10.1186/1742-9994-4-12
Official URL:http://www.frontiersinzoology.com/content/pdf/1742-9994-4-12.pdf
PubMed ID:17475021
Permanent URL: http://doi.org/10.5167/uzh-281

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations