Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-28605

Widmer, C C; Pereira, C P; Gehrig, P; Vallelian, F; Schoedon, G; Buehler, P W; Schaer, D J (2010). Hemoglobin can attenuate hydrogen peroxide-induced oxidative stress by acting as an antioxidative peroxidase. Antioxidants and Redox Signaling, 12(2):185-198.

View at publisher


Hemoglobin is considered a potentially toxic molecule when released from erythrocytes during hemolysis, inflammation, or tissue injury. The mechanisms of toxicity involve reduced nitric oxide bioavailability and oxidative processes both occurring at the heme prosthetic groups. When the endogenous oxidant H(2)O(2) reacts with Hb, transient radicals are generated during the peroxidative consumption of H(2)O(2). If not neutralized, these radicals can lead to tissue toxicity. The net biologic effect of extracellular Hb in an H(2)O(2)-rich environment will therefore be determined by the balance of H(2)O(2) decomposition (potential protective effect) and radical generation (potential damaging effect). Here we show that Hb can protect different cell types from H(2)O(2)-mediated cell death and the associated depletion of intracellular glutathione and ATP. Importantly, Hb blunts the transcriptional oxidative-stress response induced by H(2)O(2) in human vascular smooth muscle cells (VSMCs). Based on spectrophotometric and quantitative mass spectrometry analysis, we suggested a novel mechanism in which Hb redox-cycles H(2)O(2) and simultaneously internalizes the radical burden, with irreversible structural globin changes starting with specific amino acid oxidation involving the heme proximate betaCys93 and ultimately ending with protein precipitation. Our results suggest that complex interactions determine whether extracellular Hb, under certain circumstances, acts a protective or a damaging factor during peroxidative stress conditions.


29 citations in Web of Science®
31 citations in Scopus®
Google Scholar™



1166 downloads since deposited on 27 Jan 2010
294 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic and Policlinic for Internal Medicine
04 Faculty of Medicine > Functional Genomics Center Zurich
08 University Research Priority Programs > Systems Biology / Functional Genomics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Deposited On:27 Jan 2010 10:11
Last Modified:05 Apr 2016 13:49
Publisher:Mary Ann Liebert
Publisher DOI:10.1089/ars.2009.2826
PubMed ID:19702440

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page