UZH-Logo

Maintenance Infos

Hepatocyte-specific deletion of the antiapoptotic protein myeloid cell leukemia-1 triggers proliferation and hepatocarcinogenesis in mice


Weber, A; Boger, R; Vick, B; Urbanik, T; Haybaeck, J; Zoller, S; Teufel, A; Krammer, P H; Opferman, J T; Galle, P R; Schuchmann, M; Heikenwalder, M; Schulze-Bergkamen, H (2010). Hepatocyte-specific deletion of the antiapoptotic protein myeloid cell leukemia-1 triggers proliferation and hepatocarcinogenesis in mice. Hepatology, 51(4):1226-1236.

Abstract

Regulation of hepatocellular apoptosis is crucial for liver homeostasis. Increased sensitivity of hepatocytes toward apoptosis results in chronic liver injury, whereas apoptosis resistance is linked to hepatocarcinogenesis and nonresponsiveness to therapy-induced cell death. Recently, we have demonstrated an essential role of the antiapoptotic Bcl-2 family member Myeloid cell leukemia-1 (Mcl-1) in hepatocyte survival. In mice lacking Mcl-1 specifically in hepatocytes (Mcl-1(Deltahep)), spontaneous apoptosis caused severe liver damage. Here, we demonstrate that chronically increased apoptosis of hepatocytes coincides with strong hepatocyte proliferation resulting in hepatocellular carcinoma (HCC). Liver cell tumor formation was observed in >50% of Mcl-1(Deltahep) mice already by the age of 8 months, whereas 12-month-old wild-type (wt) and heterozygous Mcl-1(flox/wt) mice lacked tumors. Tumors revealed a heterogenous spectrum ranging from small dysplastic nodules to HCC. The neoplastic nature of the tumors was confirmed by histology, expression of the HCC marker glutamine synthetase and chromosomal aberrations. Liver carcinogenesis in Mcl-1(Deltahep) mice was paralleled by markedly increased levels of Survivin, an important regulator of mitosis which is selectively overexpressed in common human cancers. Conclusion: This study provides in vivo evidence that increased apoptosis of hepatocytes not only impairs liver homeostasis but is also accompanied by hepatocyte proliferation and hepatocarcinogenesis. Our findings might have implications for understanding apoptosis-related human liver diseases. (HEPATOLOGY 2010.).

Regulation of hepatocellular apoptosis is crucial for liver homeostasis. Increased sensitivity of hepatocytes toward apoptosis results in chronic liver injury, whereas apoptosis resistance is linked to hepatocarcinogenesis and nonresponsiveness to therapy-induced cell death. Recently, we have demonstrated an essential role of the antiapoptotic Bcl-2 family member Myeloid cell leukemia-1 (Mcl-1) in hepatocyte survival. In mice lacking Mcl-1 specifically in hepatocytes (Mcl-1(Deltahep)), spontaneous apoptosis caused severe liver damage. Here, we demonstrate that chronically increased apoptosis of hepatocytes coincides with strong hepatocyte proliferation resulting in hepatocellular carcinoma (HCC). Liver cell tumor formation was observed in >50% of Mcl-1(Deltahep) mice already by the age of 8 months, whereas 12-month-old wild-type (wt) and heterozygous Mcl-1(flox/wt) mice lacked tumors. Tumors revealed a heterogenous spectrum ranging from small dysplastic nodules to HCC. The neoplastic nature of the tumors was confirmed by histology, expression of the HCC marker glutamine synthetase and chromosomal aberrations. Liver carcinogenesis in Mcl-1(Deltahep) mice was paralleled by markedly increased levels of Survivin, an important regulator of mitosis which is selectively overexpressed in common human cancers. Conclusion: This study provides in vivo evidence that increased apoptosis of hepatocytes not only impairs liver homeostasis but is also accompanied by hepatocyte proliferation and hepatocarcinogenesis. Our findings might have implications for understanding apoptosis-related human liver diseases. (HEPATOLOGY 2010.).

Citations

41 citations in Web of Science®
44 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

4 downloads since deposited on 06 Feb 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Functional Genomics Center Zurich
04 Faculty of Medicine > University Hospital Zurich > Institute of Neuropathology
04 Faculty of Medicine > University Hospital Zurich > Institute of Surgical Pathology
08 University Research Priority Programs > Systems Biology / Functional Genomics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2010
Deposited On:06 Feb 2010 19:20
Last Modified:05 Apr 2016 13:49
Publisher:Wiley-Blackwell
ISSN:0270-9139
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1002/hep.23479
PubMed ID:20099303
Permanent URL: http://doi.org/10.5167/uzh-28616

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations