Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-28642

Hödl, M; Basler, K (2009). Transcription in the absence of histone H3.3. Current Biology, 19(14):1221-1226.

[img]
Preview
PDF
1MB

Abstract

Di- and trimethylation of histone H3 lysine 4 (H3K4me2 and H3K4me3) are hallmarks of chromatin at active genes. The major fraction of K4-methylated histone H3 is the variant H3 (termed H3.3 in Drosophila), which replaces canonical H3 (H3.2) in transcribed genes. Here, we genetically address the in vivo significance of such K4 methylation by replacing wild-type H3.3 with a mutant form (H3.3K4A) that cannot be methylated. We monitored the transcription that occurs in response to multiple well-described signaling pathways. Surprisingly, the transcriptional outputs of these pathways remain intact in H3.3K4A mutant cells. Even the complete absence of both H3.3 genes does not noticeably affect viability or function of cells: double mutant animals are viable but sterile. Fertility can be rescued by K4-containing versions of H3.3, but not with mutant H3.3 (H3.3K4A) or with canonical H3.2. Together, these data suggest that in Drosophila, presence of H3.3K4me in the chromatin of active genes is dispensable for successful transcription in most cells and only plays an important role in reproductive tissues.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
DDC:570 Life sciences; biology
Language:English
Date:2009
Deposited On:28 Jan 2010 15:18
Last Modified:27 Nov 2013 18:34
Publisher:Elsevier
ISSN:0960-9822
Publisher DOI:10.1016/j.cub.2009.05.048
PubMed ID:19523831
Citations:Web of Science®. Times Cited: 40
Google Scholar™
Scopus®. Citation Count: 45

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page