Quick Search:

is currently disabled due to reindexing of the ZORA database. Please use Advanced Search.
uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-2867

Wenger, D; Gerecke, A; Heeb, N; Naegeli, H; Zenobi, R (2008). Catalytic diesel particulate filters reduce the in vitro estrogenic activity of diesel exhaust. Analytical and Bioanalytical Chemistry, 390(8):2021-2029.

[img] PDF - Registered users only
1MB

Abstract

An in vitro reporter gene assay based on human breast cancer T47D cells (ER-CALUX) was applied to examine the ability of diesel exhaust to induce or inhibit estrogen receptor (ER)-mediated gene expression. Exhaust from a heavy-duty diesel engine was either treated by iron- or copper/iron-catalyzed diesel particulate filters (DPFs) or studied as unfiltered exhaust. Collected samples included particle-bound and semivolatile constituents of diesel exhaust. Our findings show that all of the samples contained compounds that were able to induce ER-mediated gene expression as well as compounds that suppressed the activity of the endogenous hormone 17beta-estradiol (E2). Estrogenic activity prevailed over antiestrogenic activity. We found an overall ER-mediated activity of 1.63 +/- 0.31 ng E2 CALUX equivalents (E2-CEQs) per m(3) of unfiltered exhaust. In filtered exhaust, we measured 0.74 +/- 0.07 (iron-catalyzed DPF) and 0.55 +/- 0.09 ng E2-CEQ m(-3) (copper/iron-catalyzed DPF), corresponding to reductions in estrogenic activity of 55 and 66%, respectively. Our study demonstrates that both catalytic DPFs lowered the ER-mediated endocrine-disrupting potential of diesel exhaust.

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Pharmacology and Toxicology
DDC:570 Life sciences; biology
Language:English
Date:2008
Deposited On:25 Aug 2008 07:09
Last Modified:27 Nov 2013 22:06
Publisher:Springer
ISSN:1618-2642
Funders:Swiss National Science Foundation
Publisher DOI:10.1007/s00216-008-1872-8
PubMed ID:18264702
Citations:Web of Science®. Times Cited: 7
Google Scholar™
Scopus®. Citation Count: 7

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page