Quick Search:

is currently disabled due to reindexing of the ZORA database. Please use Advanced Search.
uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-28678

Buetti-Dinh, A; Ungricht, R; Kelemen, J Z; Shetty, C; Ratna, P; Becskei, A (2009). Control and signal processing by transcriptional interference. Molecular Systems Biology, 5:300.

[img]
Preview
PDF
2MB

Abstract

A transcriptional activator can suppress gene expression by interfering with transcription initiated by another activator. Transcriptional interference has been increasingly recognized as a regulatory mechanism of gene expression. The signals received by the two antagonistically acting activators are combined by the polymerase trafficking along the DNA. We have designed a dual-control genetic system in yeast to explore this antagonism systematically. Antagonism by an upstream activator bears the hallmarks of competitive inhibition, whereas a downstream activator inhibits gene expression non-competitively. When gene expression is induced weakly, the antagonistic activator can have a positive effect and can even trigger paradoxical activation. Equilibrium and non-equilibrium models of transcription shed light on the mechanism by which interference converts signals, and reveals that self-antagonism of activators imitates the behavior of feed-forward loops. Indeed, a synthetic circuit generates a bell-shaped response, so that the induction of expression is limited to a narrow range of the input signal. The identification of conserved regulatory principles of interference will help to predict the transcriptional response of genes in their genomic context.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
08 University Research Priority Programs > Systems Biology / Functional Genomics
DDC:570 Life sciences; biology
Language:English
Date:2009
Deposited On:31 Jan 2010 18:04
Last Modified:27 Nov 2013 22:47
Publisher:Nature Publishing Group
ISSN:1744-4292
Publisher DOI:10.1038/msb.2009.61
PubMed ID:19690569
Citations:Web of Science®. Times Cited: 11
Google Scholar™
Scopus®. Citation Count: 12

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page