Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-28841

Doyle, J A; Endress, P K (2010). Integrating early cretaceous fossils into the phylogeny of living angiosperms: Magnoliidae and eudicots. Journal of Systematics and Evolution, 48(1):1-35.

[img] PDF - Registered users only
2MB

Abstract

Over the past 25 years, discoveries of Early Cretaceous fossil flowers, often associated with pollen and sometimes with vegetative parts, have revolutionized our understanding of the morphology and diversity of early angiosperms. However, few of these fossils have been integrated into the increasingly robust phylogeny of living angiosperms based primarily on molecular data. To remedy this situation, we have used a morphological dataset for living basal angiosperms (including basal eudicots and monocots) to assess the most parsimonious positions of early angiosperm fossils on cladograms of Recent plants, using constraint trees that represent the current range of hypotheses on higher-level relationships, and concentrating on Magnoliidae (the clade including Magnoliales, Laurales, Canellales, and Piperales) and eudicots. In magnoliids, our results confirm proposed relationships of Archaeanthus (latest Albian?) to Magnoliaceae, Endressinia (late Aptian) to Magnoliales (the clade comprising Degeneria, Galbulimima, Eupomatia, and Annonaceae), and Walkeripollis pollen tetrads (late Barremian?) to Winteraceae, but they indicate that Mauldinia (early Cenomanian) was sister to both Lauraceae and Hernandiaceae rather than to Lauraceae alone. Among middle Albian to early Cenomanian eudicots, we confirm relationships of Nelumbites to Nelumbo, platanoid inflorescences and Sapindopsis to Platanaceae, and Spanomera to Buxaceae. With the possible exception of Archaeanthus, these fossils are apparently not crown group members of living families but rather stem relatives of one or more families.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Systematic Botany and Botanical Gardens
DDC:580 Plants (Botany)
Language:English
Date:2010
Deposited On:20 Mar 2010 14:43
Last Modified:28 Nov 2013 00:35
Publisher:Wiley-Blackwell
ISSN:1759-6831
Publisher DOI:10.1111/j.1759-6831.2009.00058.x
Citations:Web of Science®. Times Cited: 42
Google Scholar™
Scopus®. Citation Count: 42

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page