UZH-Logo

Flamingo regulates R8 axon-axon and axon-target interactions in the Drosophila visual system.


Senti, K A; Usui, T; Boucke, K; Greber, U F; Uemura, T; Dickson, B J (2003). Flamingo regulates R8 axon-axon and axon-target interactions in the Drosophila visual system. Current Biology, 13(10):828-832.

Abstract

Photoreceptors (R cells) in the Drosophila retina connect to targets in three distinct layers of the optic lobe of the brain: R1-R6 connect to the lamina, and R7 and R8 connect to distinct layers in the medulla. In each of these layers, R axon termini are arranged in evenly spaced topographic arrays. In a genetic screen for mutants with abnormal R cell connectivity, we recovered mutations in flamingo (fmi). fmi encodes a seven-transmembrane cadherin, previously shown to function in planar cell polarity and in dendritic patterning. Here, we show that fmi has two specific functions in R8 axon targeting: it facilitates competitive interactions between adjacent R8 axons to ensure their correct spacing, and it promotes the formation of stable connections between R8 axons and their target cells in the medulla. The former suggests a general role for Fmi in establishing nonoverlapping dendritic and axonal target fields. The latter, together with the finding that N-Cadherin has an analogous role in R7 axon-target interactions, points to a cadherin-based system for target layer specificity in the Drosophila visual system.

Photoreceptors (R cells) in the Drosophila retina connect to targets in three distinct layers of the optic lobe of the brain: R1-R6 connect to the lamina, and R7 and R8 connect to distinct layers in the medulla. In each of these layers, R axon termini are arranged in evenly spaced topographic arrays. In a genetic screen for mutants with abnormal R cell connectivity, we recovered mutations in flamingo (fmi). fmi encodes a seven-transmembrane cadherin, previously shown to function in planar cell polarity and in dendritic patterning. Here, we show that fmi has two specific functions in R8 axon targeting: it facilitates competitive interactions between adjacent R8 axons to ensure their correct spacing, and it promotes the formation of stable connections between R8 axons and their target cells in the medulla. The former suggests a general role for Fmi in establishing nonoverlapping dendritic and axonal target fields. The latter, together with the finding that N-Cadherin has an analogous role in R7 axon-target interactions, points to a cadherin-based system for target layer specificity in the Drosophila visual system.

Citations

92 citations in Web of Science®
88 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:13 May 2003
Deposited On:11 Feb 2008 12:14
Last Modified:05 Apr 2016 12:13
Publisher:Elsevier
ISSN:0960-9822
Publisher DOI:10.1016/S0960-9822(03)00291-4
PubMed ID:12747830

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations