UZH-Logo

Maintenance Infos

Cardiovascular determinants of life span


Shi, Y; Camici, G G; Lüscher, T F (2010). Cardiovascular determinants of life span. Pflügers Archiv: European Journal of Physiology (Pflugers Archiv), 459(2):315-324.

Abstract

The prevalence of cardiovascular diseases rises with aging and is one of the main causes of mortality in western countries. In view of the progressively aging population, there is an urge for a better understanding of age-associated cardiovascular diseases and its underlying molecular mechanisms. The risk factors for cardiovascular diseases include unhealthy diet, diabetes, obesity, smoking, alcohol consumption, physical inactivity, and aging. Increased production of oxygen-derived free radicals plays an important role in mediating cardiovascular diseases. Oxidative stress affects the availability and/or balance of key-regulators of vascular homeostasis and favors the development of cardiovascular diseases. Reactive oxygen species are generated by different intracellular molecular pathways principally located in the cytoplasm and in the mitochondria. The mitochondrial protein p66Shc and the deacetylase enzyme SIRT1 were shown to be involved in different aspects of cardiovascular diseases. This review focuses on the latest scientific advances in understanding cardiovascular diseases associated to aging, as well as delineating the possible therapeutic implications of p66Shc and SIRT 1 in this process.

The prevalence of cardiovascular diseases rises with aging and is one of the main causes of mortality in western countries. In view of the progressively aging population, there is an urge for a better understanding of age-associated cardiovascular diseases and its underlying molecular mechanisms. The risk factors for cardiovascular diseases include unhealthy diet, diabetes, obesity, smoking, alcohol consumption, physical inactivity, and aging. Increased production of oxygen-derived free radicals plays an important role in mediating cardiovascular diseases. Oxidative stress affects the availability and/or balance of key-regulators of vascular homeostasis and favors the development of cardiovascular diseases. Reactive oxygen species are generated by different intracellular molecular pathways principally located in the cytoplasm and in the mitochondria. The mitochondrial protein p66Shc and the deacetylase enzyme SIRT1 were shown to be involved in different aspects of cardiovascular diseases. This review focuses on the latest scientific advances in understanding cardiovascular diseases associated to aging, as well as delineating the possible therapeutic implications of p66Shc and SIRT 1 in this process.

Citations

14 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

84 downloads since deposited on 10 Mar 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2010
Deposited On:10 Mar 2010 10:44
Last Modified:05 Apr 2016 13:51
Publisher:Springer
ISSN:0031-6768
Additional Information:The original publication is available at www.springerlink.com
Publisher DOI:10.1007/s00424-009-0727-2
PubMed ID:19756718
Permanent URL: http://doi.org/10.5167/uzh-29243

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations