UZH-Logo

Does biodiversity increase spatial stability in plant community biomass?


Weigelt, A; Schumacher, J; Roscher, C; Schmid, B (2008). Does biodiversity increase spatial stability in plant community biomass? Ecology Letters, 11(4):338-347.

Abstract

We tested the hypothesis that biodiversity decreases the spatial variability of biomass production between subplots taken within experimental grassland plots. Our findings supported this hypothesis if functional diversity (weighted Rao's Q) was considered. Further analyses revealed that diversity in rooting depth and clonal growth form were the most important components of functional diversity stabilizing productivity. Using species or functional group richness as diversity measures there was no significant effect on spatial variability of biomass production, demonstrating the importance of the biodiversity component considered. Moreover, we found a significant increase in spatial variability of productivity with decreasing size of harvested area, suggesting small-scale heterogeneity as an important driver. The ability of diverse communities to stabilize biomass production across spatial heterogeneity may be due to complementary use of spatial niches. Nevertheless, the positive effect of functional diversity on spatial stability appears to be less pronounced than previously reported effects on temporal stability.

We tested the hypothesis that biodiversity decreases the spatial variability of biomass production between subplots taken within experimental grassland plots. Our findings supported this hypothesis if functional diversity (weighted Rao's Q) was considered. Further analyses revealed that diversity in rooting depth and clonal growth form were the most important components of functional diversity stabilizing productivity. Using species or functional group richness as diversity measures there was no significant effect on spatial variability of biomass production, demonstrating the importance of the biodiversity component considered. Moreover, we found a significant increase in spatial variability of productivity with decreasing size of harvested area, suggesting small-scale heterogeneity as an important driver. The ability of diverse communities to stabilize biomass production across spatial heterogeneity may be due to complementary use of spatial niches. Nevertheless, the positive effect of functional diversity on spatial stability appears to be less pronounced than previously reported effects on temporal stability.

Citations

45 citations in Web of Science®
49 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

162 downloads since deposited on 26 Aug 2008
42 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2008
Deposited On:26 Aug 2008 09:19
Last Modified:05 Apr 2016 12:25
Publisher:Wiley-Blackwell
ISSN:1461-023X
Additional Information:The definitive version is available at www.blackwell-synergy.com
Publisher DOI:10.1111/j.1461-0248.2007.01145.x
Permanent URL: http://doi.org/10.5167/uzh-2934

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations