UZH-Logo

Maintenance Infos

Body weight supported gait training: from laboratory to clinical setting


Dietz, V (2009). Body weight supported gait training: from laboratory to clinical setting. Brain Research Bulletin, 78(1):I-VI.

Abstract

After spinal cord injury (SCI) of the cat or rat neuronal centres below the level of lesion exhibit plasticity that can be exploited by specific training paradigms. In individuals with complete or incomplete SCI, human spinal locomotor centers can be activated by appropriate afferent input. This includes to facilitate and assist stepping movements of the legs and to provide body weight support (BWS) standing on a moving treadmill. Individuals with incomplete SCI benefit from such a locomotor training such that they improve the ability to walk over ground. Load- and hip-joint-related afferent input seems to be of crucial importance for both the generation of a locomotor pattern and the effectiveness of the training. It appears to be a critical combination of afferent signals that is needed to generate and improve a locomotor pattern after SCI. Mobility of individuals after a SCI can be improved by taking advantage of the plasticity of spinal neuronal circuits and can be maintained with persistent locomotor activity. Since several years driven gait orthoses can provide a standardized locomotor training. In the future, if regeneration approaches can successfully be applied in human SCI, even individuals with complete SCI may recover walking ability with locomotor training. Presently, individuals with complete SCI, spinal neuronal circuits undergo a degradation of their function 1 year after injury.

After spinal cord injury (SCI) of the cat or rat neuronal centres below the level of lesion exhibit plasticity that can be exploited by specific training paradigms. In individuals with complete or incomplete SCI, human spinal locomotor centers can be activated by appropriate afferent input. This includes to facilitate and assist stepping movements of the legs and to provide body weight support (BWS) standing on a moving treadmill. Individuals with incomplete SCI benefit from such a locomotor training such that they improve the ability to walk over ground. Load- and hip-joint-related afferent input seems to be of crucial importance for both the generation of a locomotor pattern and the effectiveness of the training. It appears to be a critical combination of afferent signals that is needed to generate and improve a locomotor pattern after SCI. Mobility of individuals after a SCI can be improved by taking advantage of the plasticity of spinal neuronal circuits and can be maintained with persistent locomotor activity. Since several years driven gait orthoses can provide a standardized locomotor training. In the future, if regeneration approaches can successfully be applied in human SCI, even individuals with complete SCI may recover walking ability with locomotor training. Presently, individuals with complete SCI, spinal neuronal circuits undergo a degradation of their function 1 year after injury.

Citations

34 citations in Web of Science®
49 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 17 Feb 2010
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Balgrist University Hospital, Swiss Spinal Cord Injury Center
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:January 2009
Deposited On:17 Feb 2010 13:57
Last Modified:05 Apr 2016 13:51
Publisher:Elsevier
ISSN:0361-9230
Publisher DOI:https://doi.org/10.1016/S0361-9230(08)00410-3
PubMed ID:19070780
Permanent URL: https://doi.org/10.5167/uzh-29379

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations