UZH-Logo

Maintenance Infos

In vivo and in vitro activity and mechanism of action of the multidrug cytarabine-L-glycerylyl-fluorodeoxyuridine


Bijnsdorp, I V; Schwendener, R; Schott, H; Fichtner, I; Smid, K; Schott, S; Laan, A C; Peters, G J (2007). In vivo and in vitro activity and mechanism of action of the multidrug cytarabine-L-glycerylyl-fluorodeoxyuridine. Nucleosides, Nucleotides and Nucleic Acids, 26(10-12):1619-1624.

Abstract

Multidrugs have the potential to bypass resistance. We investigated the in vitro activity and resistance circumvention of the multidrug cytarabine-L-fluorodeoxyuridine (AraC-L-5FdU), linked via a glycerophospholipid linkage. Cytotoxicity was determined using sensitive (A2780, FM3A/0) and resistant (AG6000, AraC resistant, deoxycytidine kinase deficient; FM3A/TK-, 5FdU resistant, thymidine kinase deficient) cell lines. Circumvention of nucleoside transporter and activating enzymes was determined using specific inhibitors, HPLC analysis and standard radioactivity assays. AraC-L-5FdU was active (IC50: 0.03 microM in both A2780 and FM3A/0), had some activity in AG6000 (IC50: 0.28 microM), but no activity in FM3A/TK(-) (IC50: 18.3 microM). AraC-nucleotides were not detected in AG6000. 5FdU-nucleotides were detected in all cell lines. AraC-L-5FdU did not inhibit TS in FM3A/TK(-) (5%). Since phosphatase/nucleotidase-inhibition reduced cytotoxicity 7-70-fold, cleavage seems to be outside the cell, presumably to nucleotides, and then to nucleosides. The multidrug was orally active in the HT-29 colon carcinoma xenografts which are resistant toward the single drugs.

Multidrugs have the potential to bypass resistance. We investigated the in vitro activity and resistance circumvention of the multidrug cytarabine-L-fluorodeoxyuridine (AraC-L-5FdU), linked via a glycerophospholipid linkage. Cytotoxicity was determined using sensitive (A2780, FM3A/0) and resistant (AG6000, AraC resistant, deoxycytidine kinase deficient; FM3A/TK-, 5FdU resistant, thymidine kinase deficient) cell lines. Circumvention of nucleoside transporter and activating enzymes was determined using specific inhibitors, HPLC analysis and standard radioactivity assays. AraC-L-5FdU was active (IC50: 0.03 microM in both A2780 and FM3A/0), had some activity in AG6000 (IC50: 0.28 microM), but no activity in FM3A/TK(-) (IC50: 18.3 microM). AraC-nucleotides were not detected in AG6000. 5FdU-nucleotides were detected in all cell lines. AraC-L-5FdU did not inhibit TS in FM3A/TK(-) (5%). Since phosphatase/nucleotidase-inhibition reduced cytotoxicity 7-70-fold, cleavage seems to be outside the cell, presumably to nucleotides, and then to nucleosides. The multidrug was orally active in the HT-29 colon carcinoma xenografts which are resistant toward the single drugs.

Citations

7 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 15 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2007
Deposited On:15 Mar 2009 19:19
Last Modified:05 Apr 2016 12:25
Publisher:Taylor & Francis
ISSN:1525-7770
Publisher DOI:10.1080/15257770701548931
PubMed ID:18066839
Permanent URL: http://doi.org/10.5167/uzh-2953

Download

[img]
Filetype: PDF - Repository staff only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations