UZH-Logo

Maintenance Infos

Layered volume splatting


Schlegel, P; Pajarola, R (2009). Layered volume splatting. In: International Symposium on Visual Computing, Las Vegas, USA, 30 November 2009 - 2 December 2009, 1-12.

Abstract

We present a new layered, hardware-accelerated splatting
algorithm for volume rendering. Layered volume splatting features the speed benefits of fast axis-aligned pre-classified sheet-buffer splatting while at the same time exhibiting display quality comparable to high-quality post-classified view-aligned sheet-buffer splatting. Additionally, we enhance the quality by using a more accurate approximation of the volume rendering integral. Commonly, the extinction coefficient of the volume rendering integral is approximated by the first two elements of its Taylor series expansion to allow for simple α-blending. In our approach we use the original, exponential extinction coefficient to achieve a better approximation. In this paper we describe the layered splatting algorithm and how it can be implemented on the GPU. We compare the results in terms of performance and quality to prior state-of-the-art
volume splatting methods.

We present a new layered, hardware-accelerated splatting
algorithm for volume rendering. Layered volume splatting features the speed benefits of fast axis-aligned pre-classified sheet-buffer splatting while at the same time exhibiting display quality comparable to high-quality post-classified view-aligned sheet-buffer splatting. Additionally, we enhance the quality by using a more accurate approximation of the volume rendering integral. Commonly, the extinction coefficient of the volume rendering integral is approximated by the first two elements of its Taylor series expansion to allow for simple α-blending. In our approach we use the original, exponential extinction coefficient to achieve a better approximation. In this paper we describe the layered splatting algorithm and how it can be implemented on the GPU. We compare the results in terms of performance and quality to prior state-of-the-art
volume splatting methods.

Downloads

36 downloads since deposited on 09 Feb 2010
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Language:English
Event End Date:2 December 2009
Deposited On:09 Feb 2010 15:40
Last Modified:05 Apr 2016 13:52
Permanent URL: http://doi.org/10.5167/uzh-29734

Download

[img]
Preview
Filetype: PDF
Size: 6MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations