UZH-Logo

Injectable candidate sealants for fetal membrane repair: bonding and toxicity in vitro


Bilic, G; Brubaker, C; Messersmith, P B; Mallik, A S; Quinn, T M; Haller, C; Done, E; Gucciardo, L; Zeisberger, S M; Zimmermann, R; Deprest, J; Zisch, A (2010). Injectable candidate sealants for fetal membrane repair: bonding and toxicity in vitro. American Journal of Obstetrics and Gynecology, 202(1):85.e1-85.e9.

Abstract

OBJECTIVE: This study was undertaken to test injectable surgical sealants that are biocompatible with fetal membranes and that are to be used eventually for the closure of iatrogenic membrane defects. STUDY DESIGN: Dermabond (Ethicon Inc, Norderstedt, Germany), Histoacryl (B. Braun GmbH, Tuttlingen, Germany), and Tissucol (Baxter AG, Volketwil, Switzerland) fibrin glue, and 3 types of in situ forming poly(ethylene glycol)-based polymer hydrogels were tested for acute toxicity on direct contact with fetal membranes for 24 hours. For the determination of elution toxicity, extracts of sealants were incubated on amnion cell cultures for 72 hours. Bonding and toxicity was assessed through morphologic and/or biochemical analysis. RESULTS: Extracts of all adhesives were nontoxic for cultured cells. However, only Tissucol and 1 type of poly(ethylene glycol)-based hydrogel, which is a mussel-mimetic tissue adhesive, showed efficient, nondisruptive, nontoxic bonding to fetal membranes. Mussel-mimetic tissue adhesive that was applied over membrane defects that were created with a 3.5-mm trocar accomplished leak-proof closure that withstood membrane stretch in an in vitro model. CONCLUSION: A synthetic hydrogel-type tissue adhesive that merits further evaluation in vivo emerged as a potential sealing modality for iatrogenic membrane defects.

OBJECTIVE: This study was undertaken to test injectable surgical sealants that are biocompatible with fetal membranes and that are to be used eventually for the closure of iatrogenic membrane defects. STUDY DESIGN: Dermabond (Ethicon Inc, Norderstedt, Germany), Histoacryl (B. Braun GmbH, Tuttlingen, Germany), and Tissucol (Baxter AG, Volketwil, Switzerland) fibrin glue, and 3 types of in situ forming poly(ethylene glycol)-based polymer hydrogels were tested for acute toxicity on direct contact with fetal membranes for 24 hours. For the determination of elution toxicity, extracts of sealants were incubated on amnion cell cultures for 72 hours. Bonding and toxicity was assessed through morphologic and/or biochemical analysis. RESULTS: Extracts of all adhesives were nontoxic for cultured cells. However, only Tissucol and 1 type of poly(ethylene glycol)-based hydrogel, which is a mussel-mimetic tissue adhesive, showed efficient, nondisruptive, nontoxic bonding to fetal membranes. Mussel-mimetic tissue adhesive that was applied over membrane defects that were created with a 3.5-mm trocar accomplished leak-proof closure that withstood membrane stretch in an in vitro model. CONCLUSION: A synthetic hydrogel-type tissue adhesive that merits further evaluation in vivo emerged as a potential sealing modality for iatrogenic membrane defects.

Citations

14 citations in Web of Science®
39 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

151 downloads since deposited on 15 Feb 2010
35 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Obstetrics
04 Faculty of Medicine > University Hospital Zurich > Division of Surgical Research
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2010
Deposited On:15 Feb 2010 13:46
Last Modified:05 Apr 2016 13:53
Publisher:Elsevier
ISSN:0002-9378
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:10.1016/j.ajog.2009.07.051
PubMed ID:20096254
Permanent URL: http://doi.org/10.5167/uzh-29861

Download

[img]Filetype: PDF - Registered users only
Size: 1MB
View at publisher

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 493kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations