UZH-Logo

Physiologically low oxygen concentrations in fetal skin regulate hypoxia-inducible factor 1 and transforming growth factor-beta3.


Scheid, A; Wenger, R H; Schäffer, L; Camenisch, I; Distler, O; Ferenc, A; Cristina, H G; Ryan, H E; Johnson, R S; Wagner, K F; Stauffer, U G; Bauer, C; Gassmann, M; Meuli, M (2002). Physiologically low oxygen concentrations in fetal skin regulate hypoxia-inducible factor 1 and transforming growth factor-beta3. FASEB Journal, 16(3):411-413.

Abstract

In the first-trimester mammalian fetus, skin wounds heal with perfect reconstitution of the dermal architecture without scar formation. Understanding environmental molecular regulation in fetal wound healing may reveal scar-limiting therapeutical strategies for the prevention of postnatal scarring wound repair. Therefore, we performed studies on fetal skin oxygenation and skin and wound expression of hypoxia-inducible factor 1alpha (HIF-1alpha) in the sheep model in vivo and performed studies on the potential relevance of HIF-1alpha during wound healing in vitro. Skin oxygen partial pressure levels were hypoxic throughout normal development. In nonscarring fetal skin at gestation day (GD)60, HIF-1alpha could be detected neither in healthy nor in wounded tissue. At GD100, in wounds with minimal scar formation, HIF-1alpha was expressed in fibroblasts and was markedly up-regulated at the wound edge. In scarring fetal wounds at GD120, HIF-1alpha was predominantly expressed in inflammatory cells. Expression of transforming growth factor beta3 (TGF-beta3), a potent antiscarring cytokine, overlapped with HIF-1a expression at GD100. HIF-1alpha-deficient mouse embryonic fibroblasts showed impaired migratory capabilities and demonstrated that TGF-beta3, but not proscarring TGF-beta1, manifests hypoxia- and HIF-1alpha-dependent regulation. In conclusion, HIF-1alpha-dependent regulation of a potent antiscarring cytokine may provide new strategies for antiscarring manipulation of wound healing.

In the first-trimester mammalian fetus, skin wounds heal with perfect reconstitution of the dermal architecture without scar formation. Understanding environmental molecular regulation in fetal wound healing may reveal scar-limiting therapeutical strategies for the prevention of postnatal scarring wound repair. Therefore, we performed studies on fetal skin oxygenation and skin and wound expression of hypoxia-inducible factor 1alpha (HIF-1alpha) in the sheep model in vivo and performed studies on the potential relevance of HIF-1alpha during wound healing in vitro. Skin oxygen partial pressure levels were hypoxic throughout normal development. In nonscarring fetal skin at gestation day (GD)60, HIF-1alpha could be detected neither in healthy nor in wounded tissue. At GD100, in wounds with minimal scar formation, HIF-1alpha was expressed in fibroblasts and was markedly up-regulated at the wound edge. In scarring fetal wounds at GD120, HIF-1alpha was predominantly expressed in inflammatory cells. Expression of transforming growth factor beta3 (TGF-beta3), a potent antiscarring cytokine, overlapped with HIF-1a expression at GD100. HIF-1alpha-deficient mouse embryonic fibroblasts showed impaired migratory capabilities and demonstrated that TGF-beta3, but not proscarring TGF-beta1, manifests hypoxia- and HIF-1alpha-dependent regulation. In conclusion, HIF-1alpha-dependent regulation of a potent antiscarring cytokine may provide new strategies for antiscarring manipulation of wound healing.

Citations

38 citations in Web of Science®
46 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 11 Feb 2008
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Laboratory Animal Science
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2002
Deposited On:11 Feb 2008 12:11
Last Modified:25 May 2016 07:00
Publisher:Federation of American Societies for Experimental Biology
ISSN:0892-6638
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1096/fj.01-0496fje
PubMed ID:11790723
Permanent URL: http://doi.org/10.5167/uzh-30

Download

[img]Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations