Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive

Fattinger, K; Cattori, V; Hagenbuch, B; Meier, P J; Stieger, B (2000). Rifamycin SV and rifampicin exhibit differential inhibition of the hepatic rat organic anion transporting polypeptides, Oatp1 and Oatp2. Hepatology, 32(1):82-86.

Full text not available from this repository.

View at publisher

Abstract

The antibiotics, rifamycin SV and rifampicin, are known to interfere with hepatic bile salt and organic anion uptake. The aim of this study was to explore which transport systems are affected. In short-term-cultured rat hepatocytes, low concentrations (10 micromol/L) of both compounds inhibited mainly sodium-independent taurocholate uptake, whereas higher concentrations (100 micromol/L) also inhibited sodium-dependent taurocholate uptake. In Xenopus laevis oocytes expressing the Na(+)/taurocholate cotransporting polypeptide (Ntcp), high rifamycin SV and rifampicin concentrations were required for inhibition of taurocholate uptake. In contrast, sodium-independent taurocholate uptake mediated by the organic anion transporting polypeptides, Oatp1 and Oatp2, was already substantially inhibited by 10 micromol/L rifamycin SV. Rifampicin potently inhibited Oatp2-mediated taurocholate uptake, but did not interfere with Oatp1-mediated taurocholate uptake. Similar effects of rifamycin SV and rifampicin were found for Oatp1- and Oatp2-mediated estradiol-17beta-glucuronide transport. Dixon plot analysis yielded a pattern compatible with competitive inhibition of estradiol-17beta-glucuronide transport with K(i) estimates of 6.6 micromol/L and 7.3 micromol/L for rifamycin SV-induced inhibition of Oatp1 and Oatp2, respectively, and of 1.4 micromol/L for rifampicin-induced inhibition of Oatp2. These results demonstrate that rifamycin SV and rifampicin exhibit differential inhibition on Oatp1 and Oatp2, and identify rifampicin as a selective Oatp2 inhibitor. The data indicate that these inhibitors can be used to determine the in vivo relevance of Oatp1 and Oatp2 for the overall bioavailability and disposition of drugs and other Oatp1/2 substrates.

Citations

63 citations in Web of Science®
63 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 08 Apr 2009
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Clinical Pharmacology and Toxicology
DDC:610 Medicine & health
Language:English
Date:2000
Deposited On:08 Apr 2009 09:58
Last Modified:27 Nov 2013 22:18
Publisher:Wiley-Blackwell
ISSN:0270-9139
Additional Information:Wiley - Full-text available online : The definitive version is available at www.blackwell-synergy.com
Publisher DOI:10.1053/jhep.2000.8539
PubMed ID:10869292

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page