Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Schmitz, M; Graf, C; Gut, T; Sirena, D; Peter, I; Dummer, R; Greber, U F; Hemmi, S (2006). Melanoma cultures show different susceptibility towards E1A-, E1B-19 kDa- and fiber-modified replication-competent adenoviruses. Gene Therapy, 13(11):893-905.

Full text not available from this repository.

View at publisher


Replicating adenovirus (Ad) vectors with tumour tissue specificity hold great promise for treatment of cancer. We have recently constructed a conditionally replicating Ad5 AdDeltaEP-TETP inducing tumour regression in a xenograft mouse model. For further improvement of this vector, we introduced four genetic modifications and analysed the viral cytotoxicity in a large panel of melanoma cell lines and patient-derived melanoma cells. (1) The antiapoptotic gene E1B-19 kDa (Delta19 mutant) was deleted increasing the cytolytic activity in 18 of 21 melanoma cells. (2) Introduction of the E1A 122-129 deletion (Delta24 mutant), suggested to attenuate viral replication in cell cycle-arrested cells, did not abrogate this activity and increased the cytolytic activity in two of 21 melanoma cells. (3) We inserted an RGD sequence into the fiber to extend viral tropism to alphav integrin-expressing cells, and (4) swapped the fiber with the Ad35 fiber (F35) enhancing the tropism to malignant melanoma cells expressing CD46. The RGD-fiber modification strongly increased cytolysis in all of the 11 CAR-low melanoma cells. The F35 fiber-chimeric vector boosted the cytotoxicity in nine of 11 cells. Our results show that rational engineering additively enhances the cytolytic potential of Ad vectors, a prerequisite for the development of patient-customized viral therapies.


13 citations in Web of Science®
13 citations in Scopus®
Google Scholar™


Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Molecular Life Sciences
Dewey Decimal Classification:570 Life sciences; biology
Date:1 June 2006
Deposited On:11 Feb 2008 12:14
Last Modified:05 Apr 2016 12:13
Publisher:Nature Publishing Group
Publisher DOI:10.1038/sj.gt.3302739
PubMed ID:16482201

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page