UZH-Logo

Maintenance Infos

Natural feline coronavirus infection: differences in cytokine patterns in association with the outcome of infection


Kipar, A; Meli, M L; Failing, K; Euler, T; Gomes-Keller, M A; Schwartz, D; Lutz, H; Reinacher, M (2006). Natural feline coronavirus infection: differences in cytokine patterns in association with the outcome of infection. Veterinary Immunology and Immunopathology, 112(3-4):141-155.

Abstract

Natural and experimental feline coronavirus (FCoV) infection leads to systemic viral spread via monocyte-associated viraemia and induces systemic proliferation of monocytes/macrophages. In the majority of naturally infected animals, FCoV infection remains subclinical and is associated with generalised B and T cell hyperplasia, but no other pathological findings. A minority of cats, however, develop feline infectious peritonitis (FIP), a fatal systemic granulomatous disease. This is generally accompanied by B and T cell depletion. The obvious functional differences of lymphatic tissues in FCoV-infected cats with and without FIP suggest that they contribute to the outcome of FCoV infection. This study attempted to evaluate the functional changes in haemolymphatic tissues after natural FCoV infection, with special emphasis on the magnitude, phenotype and function of the monocyte/macrophage population. The spleen, mesenteric lymph nodes and bone marrow from naturally FCoV-infected cats with and without FIP and specific pathogen-free (SPF) control cats were examined for the quantity and activation state of monocytes/macrophages both by immunohistology and by quantitative real time PCR for the transcription of interleukin (IL)-1beta, IL-6, IL-10, IL-12 p40, tumour necrosis factor (TNF), granulocyte colony stimulating factor (G-CSF), macrophage-CSF (M-CSF) and GM-CSF. Compared to cats with FIP, FCoV-infected cats without FIP exhibited significantly higher IL-10 levels in the spleen and significantly lower levels of IL-6, G- and M-CSF in mesenteric lymph nodes. In cats with FIP, however, IL-12 p40 levels were significantly lower in lymphatic tissues in comparison to both SPF cats and FCoV-infected cats without FIP. In comparison to SPF cats, FIP cats had significantly higher IL-1beta levels and lower TNF levels in mesenteric lymph nodes and lower M-CSF levels in the spleen. Findings indicate that FCoV-infected cats which do not develop FIP are able to mount an effective FCoV-specific immune response and can avoid excessive macrophage activation and FIP, possibly by upregulation of IL-10 production. Development of FIP, however, might be due to a lack of IL-12 which inhibits an effective cellular immune response and allows for monocyte/macrophage activation and the development of FIP.

Natural and experimental feline coronavirus (FCoV) infection leads to systemic viral spread via monocyte-associated viraemia and induces systemic proliferation of monocytes/macrophages. In the majority of naturally infected animals, FCoV infection remains subclinical and is associated with generalised B and T cell hyperplasia, but no other pathological findings. A minority of cats, however, develop feline infectious peritonitis (FIP), a fatal systemic granulomatous disease. This is generally accompanied by B and T cell depletion. The obvious functional differences of lymphatic tissues in FCoV-infected cats with and without FIP suggest that they contribute to the outcome of FCoV infection. This study attempted to evaluate the functional changes in haemolymphatic tissues after natural FCoV infection, with special emphasis on the magnitude, phenotype and function of the monocyte/macrophage population. The spleen, mesenteric lymph nodes and bone marrow from naturally FCoV-infected cats with and without FIP and specific pathogen-free (SPF) control cats were examined for the quantity and activation state of monocytes/macrophages both by immunohistology and by quantitative real time PCR for the transcription of interleukin (IL)-1beta, IL-6, IL-10, IL-12 p40, tumour necrosis factor (TNF), granulocyte colony stimulating factor (G-CSF), macrophage-CSF (M-CSF) and GM-CSF. Compared to cats with FIP, FCoV-infected cats without FIP exhibited significantly higher IL-10 levels in the spleen and significantly lower levels of IL-6, G- and M-CSF in mesenteric lymph nodes. In cats with FIP, however, IL-12 p40 levels were significantly lower in lymphatic tissues in comparison to both SPF cats and FCoV-infected cats without FIP. In comparison to SPF cats, FIP cats had significantly higher IL-1beta levels and lower TNF levels in mesenteric lymph nodes and lower M-CSF levels in the spleen. Findings indicate that FCoV-infected cats which do not develop FIP are able to mount an effective FCoV-specific immune response and can avoid excessive macrophage activation and FIP, possibly by upregulation of IL-10 production. Development of FIP, however, might be due to a lack of IL-12 which inhibits an effective cellular immune response and allows for monocyte/macrophage activation and the development of FIP.

Citations

24 citations in Web of Science®
25 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 18 Aug 2008
1 download since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Veterinary Clinic > Department of Farm Animals
Dewey Decimal Classification:570 Life sciences; biology
630 Agriculture
Language:English
Date:2006
Deposited On:18 Aug 2008 09:48
Last Modified:05 Apr 2016 12:25
Publisher:Elsevier
ISSN:0165-2427
Publisher DOI:https://doi.org/10.1016/j.vetimm.2006.02.004
PubMed ID:16621029
Permanent URL: https://doi.org/10.5167/uzh-3025

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations