Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-3043

Caelers, A; Berishvili, G; Meli, M L; Eppler, E; Reinecke, M (2004). Establishment of a real-time RT-PCR for the determination of absolute amounts of IGF-I and IGF-II gene expression in liver and extrahepatic sites of the tilapia. General and Comparative Endocrinology, 137(2):196-204.

[img] PDF - Registered users only
View at publisher


We developed a one-tube two-temperature real-time RT-PCR that allows to absolutely quantify the gene expression of hormones using the standard curve method. As our research focuses on the expression of the insulin-like growth factors (IGFs) in bony fish, we established the technique for IGF-I and IGF-II using the tilapia (Oreochromis niloticus) as model species. As approach, we used primer extension adding a T7 phage polymerase promoter (21 nt) to the 5' end of the antisense primers. This procedure avoids the disadvantages arising from plasmids. Total RNA extracted from liver was subjected to conventional RT-PCR to create templates for in vitro transcription of IGF-I and IGF-II cRNA. Correct template sizes including the T7 promoter were verified (IGF-I: 91 nt; IGF-II: 94 nt). The PCR products were used to create IGF-I and IGF-II cRNAs which were quantified in dot blot by comparison with defined amounts of standardised kanamycin mRNA. Standardised threshold cycle (Ct) values for IGF-I and IGF-II mRNA were achieved by real-time RT-PCR and used to create standard curves. To allow sample normalisation the standard curve was also established for beta-actin as internal calibrator (template: 86 nt), and validation experiments were performed demonstrating similar amplification efficiencies for target and reference genes. Based on the standard curves, the absolute amounts of IGF-I and IGF-II mRNA were determined for liver (IGF-I: 8.90+/-1.90 pg/microg total RNA, IGF-II: 3.59+/-0.98 pg/microg total RNA) and extrahepatic sites, such as heart, kidney, intestine, spleen, gills, gonad, and brain considering the different lengths of cRNAs and mRNAs by correction factors. The reliability of the method was confirmed in additional experiments. The amplification of descending dilutions of cRNA and total liver RNA resulted in parallel slopes of the amplification curves. Furthermore, amplification plots of the standard cRNA and the IGF-I and IGF-II mRNAs showed signals starting at the expected Ct values. Thus, the one-tube RT-PCR described here is highly sensitive (detection level approximately 2 pg/microg total RNA) and allows precise absolute quantification. The method is rapid as there are neither separate reverse transcriptions nor post-amplification steps, and can be executed with low risk of contamination. Therefore, it will be helpful when investigating gene expression in any species and tissue whenever absolute levels are of concern.


69 citations in Web of Science®
71 citations in Scopus®
Google Scholar™



4 downloads since deposited on 19 Aug 2008
0 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Anatomy
05 Vetsuisse Faculty > Veterinary Clinic > Department of Farm Animals
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Deposited On:19 Aug 2008 13:23
Last Modified:05 Apr 2016 12:25
Publisher DOI:10.1016/j.ygcen.2004.03.006
PubMed ID:15158131

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page