Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-30776

Halaschek-Wiener, J; Amirabbasi-Beik, M; Monfared, N; Pieczyk, M; Sailer, C; Kollar, A; Thomas, R; Agalaridis, G; Yamada, S; Oliveira, L; Collins, J A; Meneilly, G; Marra, M A; Madden, K M; Le, N D; Connors, J M; Brooks-Wilson, A R (2009). Genetic variation in healthy oldest-old. PLoS ONE, 4(8):e6641.

[img]
Preview
PDF
1MB

Abstract

Individuals who live to 85 and beyond without developing major age-related diseases may achieve this, in part, by lacking disease susceptibility factors, or by possessing resistance factors that enhance their ability to avoid disease and prolong lifespan. Healthy aging is a complex phenotype likely to be affected by both genetic and environmental factors. We sequenced 24 candidate healthy aging genes in DNA samples from 47 healthy individuals aged eighty-five years or older (the 'oldest-old'), to characterize genetic variation that is present in this exceptional group. These healthy seniors were never diagnosed with cancer, cardiovascular disease, pulmonary disease, diabetes, or Alzheimer disease. We re-sequenced all exons, intron-exon boundaries and selected conserved non-coding sequences of candidate genes involved in aging-related processes, including dietary restriction (PPARG, PPARGC1A, SIRT1, SIRT3, UCP2, UCP3), metabolism (IGF1R, APOB, SCD), autophagy (BECN1, FRAP1), stem cell activation (NOTCH1, DLL1), tumor suppression (TP53, CDKN2A, ING1), DNA methylation (TRDMT1, DNMT3A, DNMT3B) Progeria syndromes (LMNA, ZMPSTE24, KL) and stress response (CRYAB, HSPB2). We detected 935 variants, including 848 single nucleotide polymorphisms (SNPs) and 87 insertion or deletions; 41% (385) were not recorded in dbSNP. This study is the first to present a comprehensive analysis of genetic variation in aging-related candidate genes in healthy oldest-old. These variants and especially our novel polymorphisms are valuable resources to test for genetic association in models of disease susceptibility or resistance. In addition, we propose an innovative tagSNP selection strategy that combines variants identified through gene re-sequencing- and HapMap-derived SNPs.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Plant Biology
DDC:580 Plants (Botany)
Language:English
Date:2009
Deposited On:15 Feb 2010 16:35
Last Modified:27 Nov 2013 20:28
Publisher:Public Library of Science
ISSN:1932-6203
Publisher DOI:10.1371/journal.pone.0006641
PubMed ID:19680556
Citations:Web of Science®. Times Cited: 18
Google Scholar™
Scopus®. Citation Count: 18

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page