UZH-Logo

Maintenance Infos

Covariance of cross-correlations: towards efficient measures for large-scale structure


Smith, R E (2009). Covariance of cross-correlations: towards efficient measures for large-scale structure. Monthly Notices of the Royal Astronomical Society, 400(2):851-865.

Abstract

We study the covariance of the cross-power spectrum of different tracers for the large-scale structure. We develop the counts-in-cells framework for the multitracer approach, and use this to derive expressions for the full non-Gaussian covariance matrix. We show that for the usual autopower statistic, besides the off-diagonal covariance generated through gravitational mode-coupling, the discreteness of the tracers and their associated sampling distribution can generate strong off-diagonal covariance, and that this becomes the dominant source of covariance as spatial frequencies become larger than the fundamental mode of the survey volume. On comparison with the derived expressions for the cross-power covariance, we show that the off-diagonal terms can be suppressed, if one cross-correlates a high tracer-density sample with a low one. Taking the effective estimator efficiency to be proportional to the signal-to-noise ratio (S/N), we show that, to probe clustering as a function of physical properties of the sample, i.e. cluster mass or galaxy luminosity, the cross-power approach can outperform the autopower one by factors of a few. We confront the theory with measurements of the mass–mass, halo–mass and halo–halo power spectra from a large ensemble of N-body simulations. We show that there is a significant S/N advantage to be gained from using the cross-power approach when studying the bias of rare haloes. The analysis is repeated in configuration space and again S/N improvement is found. We estimate the covariance matrix for these samples, and find strong off-diagonal contributions. The covariance depends on halo mass, with higher mass samples having stronger covariance. In agreement with theory, we show that the covariance is suppressed for the cross-power. This work points the way towards improved estimators for studying the clustering of tracers as a function of their physical properties.

We study the covariance of the cross-power spectrum of different tracers for the large-scale structure. We develop the counts-in-cells framework for the multitracer approach, and use this to derive expressions for the full non-Gaussian covariance matrix. We show that for the usual autopower statistic, besides the off-diagonal covariance generated through gravitational mode-coupling, the discreteness of the tracers and their associated sampling distribution can generate strong off-diagonal covariance, and that this becomes the dominant source of covariance as spatial frequencies become larger than the fundamental mode of the survey volume. On comparison with the derived expressions for the cross-power covariance, we show that the off-diagonal terms can be suppressed, if one cross-correlates a high tracer-density sample with a low one. Taking the effective estimator efficiency to be proportional to the signal-to-noise ratio (S/N), we show that, to probe clustering as a function of physical properties of the sample, i.e. cluster mass or galaxy luminosity, the cross-power approach can outperform the autopower one by factors of a few. We confront the theory with measurements of the mass–mass, halo–mass and halo–halo power spectra from a large ensemble of N-body simulations. We show that there is a significant S/N advantage to be gained from using the cross-power approach when studying the bias of rare haloes. The analysis is repeated in configuration space and again S/N improvement is found. We estimate the covariance matrix for these samples, and find strong off-diagonal contributions. The covariance depends on halo mass, with higher mass samples having stronger covariance. In agreement with theory, we show that the covariance is suppressed for the cross-power. This work points the way towards improved estimators for studying the clustering of tracers as a function of their physical properties.

Citations

32 citations in Web of Science®
32 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

53 downloads since deposited on 26 Feb 2010
17 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Uncontrolled Keywords:cosmology: theory; large-scale structure of Universe
Language:English
Date:December 2009
Deposited On:26 Feb 2010 15:45
Last Modified:05 Apr 2016 13:56
Publisher:Wiley-Blackwell
ISSN:0035-8711
Funders:Marie Curie Reintegration Grant, Swiss National Foundation
Additional Information:The attached file is a preprint (accepted version) of an article published in Monthly Notices of the Royal Astronomical Society. The definitive version is available at www3.interscience.wiley.com
Publisher DOI:10.1111/j.1365-2966.2009.15490.x
Related URLs:http://arxiv.org/abs/0810.1960
Permanent URL: http://doi.org/10.5167/uzh-30854

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF (Accepted manuscript, Version 2)
Size: 1MB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF (Accepted manuscript, Version 1)
Size: 603kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations