Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-30860

Tran, K V H; Saintonge, A; Moustakas, J; Bai, L; Gonzalez, A H; Holden, B P; Zaritsky, D; Kautsch, S J (2009). A spectroscopically confirmed excess of 24 micron sources in a super galaxy group at z=0.37: Enhanced dusty star formation relative to the cluster and field environment. Astrophysical Journal, 705(1):809-820.

Accepted Version


To trace how dust-obscured star formation varies with environment, we compare the fraction of 24 μm sources in a super galaxy group to the field and a rich galaxy cluster at z ~ 0.35. We draw on multi-wavelength observations9Based on observations made with (1) The ESO telescopes at Paranal Observatories under program IDs 072.A-0367, 076.B-0362, 078.B-0409; (2) the NASA/ESA Hubble Space Telescope (GO-10499); STScI is operated by the association of Universities for Research in Astronomy, Inc. under the NASA contract NAS 5-26555; (3) the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA; support for this work was provided by NASA through an award issued by JPL/Caltech (GO-20683); (4) the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060; and (5) the Magellan 6.5 m telescope operated by OCIW. that combine Hubble, Chandra, and Spitzer imaging with extensive optical spectroscopy (>1800 redshifts) to isolate galaxies in each environment and thus ensure a uniform analysis. We focus on the four galaxy groups (σ1D = 303-580 km s–1) in supergroup 1120-12 that will merge to form a galaxy cluster comparable in mass to Coma. We find that (1) the fraction of supergroup galaxies with SFRIR ≥ 3 M sun yr–1 is 4 times higher than in the cluster (32% ± 5% versus 7% ± 2%); (2) the supergroup's infrared luminosity function confirms that it has a higher density of IR members compared to the cluster and includes bright IR sources (log(L IR)[erg s–1] >45) not found in galaxy clusters at z lsim 0.35; and (3) there is a strong trend of decreasing 24 μm fraction with increasing galaxy density, i.e., an infrared-density relation, not observed in the cluster. These dramatic differences are surprising because the early-type fraction in the supergroup is already as high as in clusters, i.e., the timescales for morphological transformation cannot be strongly coupled to when the star formation is completely quenched. The supergroup has a significant fraction (~17%) of luminous, low-mass (10.0 < log(M *)[M sun] < 10.6), SFRIR ≥ 3 M sun yr–1 members that are outside the group cores (R proj ≥ 0.5 Mpc); once their star formation is quenched, most will evolve into faint red galaxies. Our analysis indicates that the supergroup's 24 μm population also differs from that in the field: (1) despite the supergroup having twice the fraction of E/S0s as the field, the fraction of SFRIR ≥ 3 M sun yr–1 galaxies is comparable in both environments, and (2) the supergroup's IR luminosity function has a higher L*IR than that previously measured for the field.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Theoretical Physics
DDC:530 Physics
Date:November 2009
Deposited On:25 Feb 2010 19:29
Last Modified:27 Nov 2013 23:13
Publisher:Institute of Physics Publishing
Funders:Swiss National Science Foundation [PP002-110576], NASA [06-GALEX06-0030, HST G0-10499], Spitzer [G05-AR-50443], JPL [1255094, 1256318, GO20683], Chandra [GO2-3183X3]
Publisher DOI:10.1088/0004-637X/705/1/809
Related URLs:http://arxiv.org/abs/0909.4079
Citations:Web of Science®. Times Cited: 34
Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page