UZH-Logo

Maintenance Infos

Local dark matter searches with LISA


Cerdonio, M; De Pietri, R; Jetzer, P; Sereno, M (2009). Local dark matter searches with LISA. Classical and Quantum Gravity, 26(9):094022.

Abstract

The drag-free satellites of LISA will maintain the test masses in geodesic motion over many years with residual accelerations at unprecedented small levels and time delay interferometry (TDI) will keep track of their differential positions at a level of picometers. This may allow investigations of fine details of the gravitational field in the solar system previously inaccessible. In this spirit, we present the concept of a method for measuring directly the gravitational effect of the density of diffuse local dark matter (LDM) with a constellation of a few drag-free satellites, by exploiting how peculiarly it would affect their relative motion. Using as a test-bed an idealized LISA with rigid arms, we find that the separation in time between the test masses is uniquely perturbed by the LDM, so that they acquire a differential breathing mode. Such an LDM signal is related to the LDM density within the orbits and has characteristic spectral components, with amplitudes increasing in time, at various frequencies of the dynamics of the constellation. This is the relevant result in that the LDM signal is brought to non-zero frequencies.

The drag-free satellites of LISA will maintain the test masses in geodesic motion over many years with residual accelerations at unprecedented small levels and time delay interferometry (TDI) will keep track of their differential positions at a level of picometers. This may allow investigations of fine details of the gravitational field in the solar system previously inaccessible. In this spirit, we present the concept of a method for measuring directly the gravitational effect of the density of diffuse local dark matter (LDM) with a constellation of a few drag-free satellites, by exploiting how peculiarly it would affect their relative motion. Using as a test-bed an idealized LISA with rigid arms, we find that the separation in time between the test masses is uniquely perturbed by the LDM, so that they acquire a differential breathing mode. Such an LDM signal is related to the LDM density within the orbits and has characteristic spectral components, with amplitudes increasing in time, at various frequencies of the dynamics of the constellation. This is the relevant result in that the LDM signal is brought to non-zero frequencies.

Citations

4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

66 downloads since deposited on 27 Feb 2010
34 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, not refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:May 2009
Deposited On:27 Feb 2010 14:25
Last Modified:05 Apr 2016 13:56
Publisher:Institute of Physics Publishing
ISSN:0264-9381
Additional Information:Special issue: Proceedings of the 7th International LISA Symposium, Barcelona, SPAIN, JUN 16-20, 2008
Publisher DOI:https://doi.org/10.1088/0264-9381/26/9/094022
Related URLs:http://arxiv.org/abs/0811.4711
Permanent URL: https://doi.org/10.5167/uzh-30884

Download

[img]
Filetype: PDF (Verlags-PDF) - Registered users only
Size: 1MB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF (Accepted manuscript, Version 2)
Size: 114kB
[img]
Preview
Content: Accepted Version
Filetype: PDF (Accepted manuscript, Version 1)
Size: 100kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations