UZH-Logo

Maintenance Infos

Detecting the Milky Way's dark disk


Bruch, T; Read, J; Baudis, L; Lake, G (2009). Detecting the Milky Way's dark disk. Astrophysical Journal, 696(1):920-923.

Abstract

In the standard model of disk galaxy formation, a dark matter disk forms as massive satellites are preferentially dragged into the disk plane and dissolve. Here, we show the importance of the dark disk for direct dark matter detection. The low velocity of the dark disk with respect to the Earth enhances detection rates at low recoil energy. For weakly interacting massive particle (WIMP) masses M WIMP gsim 50 GeV/c 2, the detection rate increases by up to a factor of 3 in the 5-20 keV recoil energy range. Comparing this with rates at higher energy is sensitive to M WIMP, providing stronger mass constraints particularly for M WIMP gsim 100 GeV/c 2. The annual modulation signal is significantly boosted and the modulation phase is shifted by ~3 weeks relative to the dark halo. The variation of the observed phase with recoil energy determines M WIMP, once the dark disk properties are fixed by future astronomical surveys. The constraints on the WIMP interaction cross section from current experiments improve by factors of 1.4-3.5 when a typical contribution from the dark disk is included.

In the standard model of disk galaxy formation, a dark matter disk forms as massive satellites are preferentially dragged into the disk plane and dissolve. Here, we show the importance of the dark disk for direct dark matter detection. The low velocity of the dark disk with respect to the Earth enhances detection rates at low recoil energy. For weakly interacting massive particle (WIMP) masses M WIMP gsim 50 GeV/c 2, the detection rate increases by up to a factor of 3 in the 5-20 keV recoil energy range. Comparing this with rates at higher energy is sensitive to M WIMP, providing stronger mass constraints particularly for M WIMP gsim 100 GeV/c 2. The annual modulation signal is significantly boosted and the modulation phase is shifted by ~3 weeks relative to the dark halo. The variation of the observed phase with recoil energy determines M WIMP, once the dark disk properties are fixed by future astronomical surveys. The constraints on the WIMP interaction cross section from current experiments improve by factors of 1.4-3.5 when a typical contribution from the dark disk is included.

Citations

53 citations in Web of Science®
53 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

101 downloads since deposited on 25 Feb 2010
26 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:May 2009
Deposited On:25 Feb 2010 17:14
Last Modified:05 Apr 2016 13:56
Publisher:Institute of Physics Publishing
ISSN:0004-637X
Funders:Swiss NSF
Publisher DOI:10.1088/0004-637X/696/1/920
Related URLs:http://arxiv.org/abs/0804.2896
Permanent URL: http://doi.org/10.5167/uzh-30885

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF (Accepted manuscript, Version 2)
Size: 1MB
View at publisher
[img]
Preview
Content: Accepted Version
Filetype: PDF (Accepted manuscript, Version 1)
Size: 179kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations