Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-30886

Mapelli, M; Colpi, M; Zampieri, L (2009). Low metallicity and ultra-luminous X-ray sources in the Cartwheel galaxy. Monthly Notices of the Royal Astronomical Society, 395(1):L71-L75.

Accepted Version
View at publisher


Observations of turbulent velocity dispersions in the H i component of galactic discs show a characteristic floor in galaxies with low star formation rates and within individual galaxies the dispersion profiles decline with radius. We carry out several high-resolution adaptive mesh simulations of gaseous discs embedded within dark matter haloes to explore the roles of cooling, star formation, feedback, shearing motions and baryon fraction in driving turbulent motions. In all simulations the disc slowly cools until gravitational and thermal instabilities give rise to a multiphase medium in which a large population of dense self-gravitating cold clouds are embedded within a warm gaseous phase that forms through shock heating. The diffuse gas is highly turbulent and is an outcome of large-scale driving of global non-axisymmetric modes as well as cloud–cloud tidal interactions and merging. At low star formation rates these processes alone can explain the observed H i velocity dispersion profiles and the characteristic value of ∼10 km s−1 observed within a wide range of disc galaxies. Supernovae feedback creates a significant hot gaseous phase and is an important driver of turbulence in galaxies with a star formation rate per unit area ≳10−3 M⊙ yr−1 kpc−2 .


53 citations in Web of Science®
53 citations in Scopus®
Google Scholar™



35 downloads since deposited on 26 Feb 2010
18 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Uncontrolled Keywords:black hole physics; galaxies: individual: Cartwheel; galaxies: starburst; X-rays: binaries; X-rays: galaxies
Date:May 2009
Deposited On:26 Feb 2010 12:58
Last Modified:05 Apr 2016 13:56
Funders:Swiss National Science Foundation [200020-109581/1], INAF [PRIN-2007-26]
Additional Information:The attached file is a preprint (accepted version) of an article published in Monthly Notices of the Royal Astronomical Society. The definitive version is available at www3.interscience.wiley.com
Publisher DOI:10.1111/j.1745-3933.2009.00645.x
Related URLs:http://arxiv.org/abs/0902.3540

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page