UZH-Logo

Maintenance Infos

Molecular basis for catecholaminergic neuron diversity


Grimm, J; Mueller, A; Hefti, F; Rosenthal, A (2004). Molecular basis for catecholaminergic neuron diversity. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 101(38):13891-13896.

Abstract

Catecholaminergic neurons control diverse cognitive, motor, and endocrine functions and are associated with multiple psychiatric and neurodegenerative disorders. We present global gene-expression profiles that define the four major classes of dopaminergic (DA) and noradrenergic neurons in the brain. Hypothalamic DA neurons and noradrenergic neurons in the locus coeruleus display distinct group-specific signatures of transporters, channels, transcription, plasticity, axon-guidance, and survival factors. In contrast, the transcriptomes of midbrain DA neurons of the substantia nigra and the ventral tegmental area are closely related with <1% of differentially expressed genes. Transcripts implicated in neural plasticity and survival are enriched in ventral tegmental area neurons, consistent with their role in schizophrenia and addiction and their decreased vulnerability in Parkinson's disease. The molecular profiles presented provide a basis for understanding the common and population-specific properties of catecholaminergic neurons and will facilitate the development of selective drugs.

Catecholaminergic neurons control diverse cognitive, motor, and endocrine functions and are associated with multiple psychiatric and neurodegenerative disorders. We present global gene-expression profiles that define the four major classes of dopaminergic (DA) and noradrenergic neurons in the brain. Hypothalamic DA neurons and noradrenergic neurons in the locus coeruleus display distinct group-specific signatures of transporters, channels, transcription, plasticity, axon-guidance, and survival factors. In contrast, the transcriptomes of midbrain DA neurons of the substantia nigra and the ventral tegmental area are closely related with <1% of differentially expressed genes. Transcripts implicated in neural plasticity and survival are enriched in ventral tegmental area neurons, consistent with their role in schizophrenia and addiction and their decreased vulnerability in Parkinson's disease. The molecular profiles presented provide a basis for understanding the common and population-specific properties of catecholaminergic neurons and will facilitate the development of selective drugs.

Citations

73 citations in Web of Science®
74 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 09 Jul 2010
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2004
Deposited On:09 Jul 2010 07:36
Last Modified:05 Apr 2016 13:57
Publisher:National Academy of Sciences
ISSN:0027-8424
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1073/pnas.0405340101
PubMed ID:15353588
Permanent URL: https://doi.org/10.5167/uzh-31201

Download

[img]
Filetype: PDF - Registered users only
Size: 668kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations