Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-31254

Sogo, J M; Lopes, M; Foiani, M (2002). Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science, 297(5581):599-602.

[img] PDF - Registered users only
665kB

Abstract

Checkpoint-mediated control of replicating chromosomes is essential for preventing cancer. In yeast, Rad53 kinase protects stalled replication forks from pathological rearrangements. To characterize the mechanisms controlling fork integrity, we analyzed replication intermediates formed in response to replication blocks using electron microscopy. At the forks, wild-type cells accumulate short single-stranded regions, which likely causes checkpoint activation, whereas rad53 mutants exhibit extensive single-stranded gaps and hemi-replicated intermediates, consistent with a lagging-strand synthesis defect. Further, rad53 cells accumulate Holliday junctions through fork reversal. We speculate that, in checkpoint mutants, abnormal replication intermediates begin to form because of uncoordinated replication and are further processed by unscheduled recombination pathways, causing genome instability.

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Molecular Cancer Research
07 Faculty of Science > Institute of Molecular Cancer Research
DDC:570 Life sciences; biology
Language:English
Date:2002
Deposited On:09 Jul 2010 09:10
Last Modified:02 Dec 2013 08:50
Publisher:American Association for the Advancement of Science (AAAS)
ISSN:0036-8075
Publisher DOI:10.1126/science.1074023
PubMed ID:12142537
Citations:Web of Science®. Times Cited: 437
Google Scholar™
Scopus®. Citation Count: 447

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page