UZH-Logo

Maintenance Infos

Mast cells and macrophages in duodenal mucosa of mice overexpressing erythropoietin


Ribatti, D; Crivellato, E; Nico, B; Guidolin, D; Gassmann, M; Djonov, V (2009). Mast cells and macrophages in duodenal mucosa of mice overexpressing erythropoietin. Journal of Anatomy, 215(5):548-554.

Abstract

There is increasing evidence suggesting a wider biological role of erythropoietin (Epo) and Epo receptor (EpoR) not related to erythropoiesis, such as the detection of EpoR in other cells, i.e. polymorphonuclear leukocytes, megakaryocytes, endothelial, myocardial and neural cells. In this study, by using a mouse model (designated tg6) that constitutively overexpresses human Epo in an oxygen-independent manner, we have investigated mast cell and macrophage number and distribution in duodenal mucosa using immunohistochemical, morphometric and image analysis methods. The results showed that tryptase-positive mast cells and BM8-positive macrophages were more numerous in duodenal mucosa specimens of tg6 mice compared with wild-type mice. Moreover, whereas in wild-type specimens both mast cells and macrophages were generally scattered throughout the villus, in tg6 specimens they were aligned along the axis of the villus. Morphometric analysis confirms this observation, and the quantitative analysis of the spatial distribution of the cells in duodenal villi indicated that in both wild-type and tg6 groups the macrophage and mast cell distribution was characterized by significant deviations from randomness. In addition, an increased number of c-kit-positive cells have been identified in the villus axis of tg6 mice, indicating an expanded compartment of mast cell precursors in the intestinal mucosa of these animals. Finally, we have also demonstrated that in tg6 specimens the number of duodenal epithelial cells positive for Epo were significantly higher as compared to wild type. Overall, these data confirm that Epo, acting as a general stimulator of the hemopoietic compartment, is able to induce an expansion of two effectors of the immune response, mast cells and macrophages, in a specific peripheral site, the duodenal mucosa, in the tg6 mouse experimental model.

There is increasing evidence suggesting a wider biological role of erythropoietin (Epo) and Epo receptor (EpoR) not related to erythropoiesis, such as the detection of EpoR in other cells, i.e. polymorphonuclear leukocytes, megakaryocytes, endothelial, myocardial and neural cells. In this study, by using a mouse model (designated tg6) that constitutively overexpresses human Epo in an oxygen-independent manner, we have investigated mast cell and macrophage number and distribution in duodenal mucosa using immunohistochemical, morphometric and image analysis methods. The results showed that tryptase-positive mast cells and BM8-positive macrophages were more numerous in duodenal mucosa specimens of tg6 mice compared with wild-type mice. Moreover, whereas in wild-type specimens both mast cells and macrophages were generally scattered throughout the villus, in tg6 specimens they were aligned along the axis of the villus. Morphometric analysis confirms this observation, and the quantitative analysis of the spatial distribution of the cells in duodenal villi indicated that in both wild-type and tg6 groups the macrophage and mast cell distribution was characterized by significant deviations from randomness. In addition, an increased number of c-kit-positive cells have been identified in the villus axis of tg6 mice, indicating an expanded compartment of mast cell precursors in the intestinal mucosa of these animals. Finally, we have also demonstrated that in tg6 specimens the number of duodenal epithelial cells positive for Epo were significantly higher as compared to wild type. Overall, these data confirm that Epo, acting as a general stimulator of the hemopoietic compartment, is able to induce an expansion of two effectors of the immune response, mast cells and macrophages, in a specific peripheral site, the duodenal mucosa, in the tg6 mouse experimental model.

Citations

7 citations in Web of Science®
7 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 18 Feb 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Veterinary Physiology
04 Faculty of Medicine > Center for Integrative Human Physiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Date:2009
Deposited On:18 Feb 2010 16:07
Last Modified:05 Apr 2016 13:57
Publisher:Wiley-Blackwell
ISSN:0021-8782
Publisher DOI:10.1111/j.1469-7580.2009.01131.x
PubMed ID:19691658
Permanent URL: http://doi.org/10.5167/uzh-31359

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations