Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-3157

Masson, F; Laino, T; Tavernelli, I; Rothlisberger, U; Hutter, J (2008). Computational study of Thymine dimer radical anion splitting in the self-repair process of duplex DNA. Journal of the American Chemical Society, 130(11):3443-3450.

[img] PDF - Registered users only
View at publisher


Formation of the thymine dimer is one of the most important types of photochemical damage in DNA, responsible for several biological pathologies. Though specifically designed proteins (photolyases) can efficiently repair this type of damage in living cells, an autocatalytic activity of the DNA itself was recently discovered, allowing for a self-repair mechanism. In this paper, we provide the first molecular dynamics study of the splitting of thymine dimer radical anions, using a quantum mechanical/molecular mechanics (QM/MM) approach based on density functional theory (DFT) to describe the quantum region. A set of seven statistically representative molecular dynamics trajectories is analyzed. Our calculations predict an asynchronously concerted process in which C5-C5' bond breaking is barrierless while C6-C6' bond breaking is characterized by a small free energy barrier. An upper bound of 2.5 kcal/mol for this barrier is estimated. Moreover, the molecular dynamics study and the low free energy barrier involved in C6-C6' bond breaking characterize the full process as being an ultrafast reaction.


44 citations in Web of Science®
43 citations in Scopus®
Google Scholar™



1 download since deposited on 09 Sep 2008
0 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Deposited On:09 Sep 2008 12:42
Last Modified:05 Apr 2016 12:26
Publisher:American Chemical Society
Publisher DOI:10.1021/ja076081h
PubMed ID:18284237

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page