Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-3165

Todorova, T; Seitsonen, A P; Hutter, J; Kuo, I F W; Mundy, C J (2006). Molecular dynamics simulation of liquid water: Hybrid density functionals. Journal of Physical Chemistry. B, 110(8):3685-3691.

[img]Accepted Version
PDF - Registered users only
View at publisher
[img] PDF - Registered users only


The structure, dynamical, and electronic properties of liquid water utilizing different hybrid density functionals were tested within the plane wave framework of first-principles molecular dynamics simulations. The computational approach, which employs modified functionals with short-ranged Hartree-Fock exchange, was first tested in calculations of the structural and bonding properties of the water dimer and cyclic water trimer. Liquid water simulations were performed at the state point of 350 K at the experimental density. Simulations included three different hybrid functionals, a meta-functional, four gradient-corrected functionals, and the local density and Hartree-Fock approximations. It is found that hybrid functionals are superior in reproducing the experimental structure and dynamical properties as measured by the radial distribution function and self-diffusion constant when compared to the pure density functionals. The local density and Hartree-Fock approximations show strongly over- and understructured liquids, respectively. Hydrogen bond analysis shows that the hybrid functionals give slightly smaller average numbers of hydrogen bonds than pure density functionals but similar hydrogen bond populations. The average molecular dipole moments in the liquid from the three hybrid functionals are lower than those of the corresponding pure density functionals.


155 citations in Web of Science®
158 citations in Scopus®
Google Scholar™



2 downloads since deposited on 22 Aug 2008
0 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Deposited On:22 Aug 2008 09:02
Last Modified:05 Apr 2016 12:26
Publisher:American Chemical Society
Publisher DOI:10.1021/jp055127v

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page