UZH-Logo

A density-functional approach to polarizable models: A Kim-Gordon response density interaction potential for molecular simulations


Tabacchi, G; Hutter, J; Mundy, C J (2005). A density-functional approach to polarizable models: A Kim-Gordon response density interaction potential for molecular simulations. Journal of Chemical Physics, 123(7):074108.

Abstract

A combined linear-response-frozen electron-density model has been implemented in a molecular-dynamics scheme derived from an extended Lagrangian formalism. This approach is based on a partition of the electronic charge distribution into a frozen region described by Kim-Gordon theory [J. Chem. Phys. 56, 3122 (1972); J. Chem. Phys. 60, 1842 (1974)] and a response contribution determined by the instantaneous ionic configuration of the system. The method is free from empirical pair potentials and the parametrization protocol involves only calculations on properly chosen subsystems. We apply this method to a series of alkali halides in different physical phases and are able to reproduce experimental structural and thermodynamic properties with an accuracy comparable to Kohn-Sham density-functional calculations.

A combined linear-response-frozen electron-density model has been implemented in a molecular-dynamics scheme derived from an extended Lagrangian formalism. This approach is based on a partition of the electronic charge distribution into a frozen region described by Kim-Gordon theory [J. Chem. Phys. 56, 3122 (1972); J. Chem. Phys. 60, 1842 (1974)] and a response contribution determined by the instantaneous ionic configuration of the system. The method is free from empirical pair potentials and the parametrization protocol involves only calculations on properly chosen subsystems. We apply this method to a series of alkali halides in different physical phases and are able to reproduce experimental structural and thermodynamic properties with an accuracy comparable to Kohn-Sham density-functional calculations.

Citations

11 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

93 downloads since deposited on 26 Mar 2009
25 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2005
Deposited On:26 Mar 2009 08:31
Last Modified:20 May 2016 10:57
Publisher:American Institute of Physics
ISSN:0021-9606
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1063/1.2001637
Permanent URL: http://doi.org/10.5167/uzh-3171

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 484kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations