UZH-Logo

Maintenance Infos

Car-Parrinello molecular dynamics study of the initial dinitrogen reduction step in Sellmann-type nitrogenase model complexes


Kirchner, B; Reiher, M; Hille, A; Hutter, J; Hess, B A (2005). Car-Parrinello molecular dynamics study of the initial dinitrogen reduction step in Sellmann-type nitrogenase model complexes. Chemistry - A European Journal, 11(2):574-583.

Abstract

We have studied reduction reactions for nitrogen fixation at Sellmann-type model complexes with Car-Parrinello simulation techniques. These dinuclear complexes are especially designed to emulate the so-called open-side FeMoco model. The main result of this work shows that in order to obtain the reduced species several side reactions have to be suppressed. These involve partial dissociation of the chelate ligands and hydrogen atom transfer to the metal center. Working at low temperature turns out to be one necessary pre-requisite in carrying out successful events. The successful events cannot be described by simple reaction coordinates. Complicated processes are involved during the initiation of the reaction. Our theoretical study emphasizes two experimental strategies which are likely to inhibit the side reactions. Clamping of the two metal fragments by a chelating phosphane ligand should prevent dissociation of the complex. Furthermore, introduction of tert-butyl substituents could improve the solubility and should thus allow usage of a wider range of (mild) acids, reductants, and reaction conditions.

We have studied reduction reactions for nitrogen fixation at Sellmann-type model complexes with Car-Parrinello simulation techniques. These dinuclear complexes are especially designed to emulate the so-called open-side FeMoco model. The main result of this work shows that in order to obtain the reduced species several side reactions have to be suppressed. These involve partial dissociation of the chelate ligands and hydrogen atom transfer to the metal center. Working at low temperature turns out to be one necessary pre-requisite in carrying out successful events. The successful events cannot be described by simple reaction coordinates. Complicated processes are involved during the initiation of the reaction. Our theoretical study emphasizes two experimental strategies which are likely to inhibit the side reactions. Clamping of the two metal fragments by a chelating phosphane ligand should prevent dissociation of the complex. Furthermore, introduction of tert-butyl substituents could improve the solubility and should thus allow usage of a wider range of (mild) acids, reductants, and reaction conditions.

Citations

22 citations in Web of Science®
23 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

335 downloads since deposited on 26 Mar 2009
35 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2005
Deposited On:26 Mar 2009 09:49
Last Modified:05 Apr 2016 12:26
Publisher:Wiley VCH
ISSN:0947-6539
Publisher DOI:https://doi.org/10.1002/chem.200400709
Permanent URL: https://doi.org/10.5167/uzh-3178

Download

[img]
Preview
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations