UZH-Logo

Cyto- and hemocompatibility of a biodegradable 3D-scaffold material designed for medical applications


Milleret, V; Simonet, M; Bittermann, A G; Neuenschwander, P; Hall, H (2009). Cyto- and hemocompatibility of a biodegradable 3D-scaffold material designed for medical applications. Journal of Biomedical Materials Research. Part B: Applied Biomaterials, 91B(1):109-121.

Abstract

In this study, the polyester urethane Degrapol® (DP) was explored for medical applications. Electrospun DP-fiber fleeces were characterized with regard to fiber morphology, swelling, and interconnectivity of interfiber spaces. Moreover, DP was assayed for cell proliferation and hemocompatibility being a prerequisite to any further in vivo application. It was shown that DP-fiber fleeces produced at different humidity while spinning affects interconnectivity of interfiber spaces, such that the higher the humidity the looser the resulting fiber fleeces. When the spinning target was cooled with dry ice, the resulting DP-fibers remained less fused to each other. However, permeability for fluorescent beads was not significantly increased. Fibroblast adhesion and proliferation occurred in a comparable manner on native as well as on fibronectin or collagen I adsorbed DP-fiber fleeces. On DP-surfaces fibroblasts proliferated equally well as compared with glass or PLGA surfaces or DP-surfaces adsorbed with fibronectin or collagen I. In contrast, human umbilical vein endothelial cells proliferated only after adsorption of DP-surfaces with fibronectin or collagen I, indicating that different cell types respond differently to DP-surfaces. Furthermore, hemocompatibility of DP-surfaces was found to be similar or better to PLGA or stainless steel, both medically used materials. These experiments indicate that DP-fiber fleeces or surfaces might be useful for tissue engineering.

In this study, the polyester urethane Degrapol® (DP) was explored for medical applications. Electrospun DP-fiber fleeces were characterized with regard to fiber morphology, swelling, and interconnectivity of interfiber spaces. Moreover, DP was assayed for cell proliferation and hemocompatibility being a prerequisite to any further in vivo application. It was shown that DP-fiber fleeces produced at different humidity while spinning affects interconnectivity of interfiber spaces, such that the higher the humidity the looser the resulting fiber fleeces. When the spinning target was cooled with dry ice, the resulting DP-fibers remained less fused to each other. However, permeability for fluorescent beads was not significantly increased. Fibroblast adhesion and proliferation occurred in a comparable manner on native as well as on fibronectin or collagen I adsorbed DP-fiber fleeces. On DP-surfaces fibroblasts proliferated equally well as compared with glass or PLGA surfaces or DP-surfaces adsorbed with fibronectin or collagen I. In contrast, human umbilical vein endothelial cells proliferated only after adsorption of DP-surfaces with fibronectin or collagen I, indicating that different cell types respond differently to DP-surfaces. Furthermore, hemocompatibility of DP-surfaces was found to be similar or better to PLGA or stainless steel, both medically used materials. These experiments indicate that DP-fiber fleeces or surfaces might be useful for tissue engineering.

Citations

11 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 21 Feb 2010
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Microscopy and Image Analysis
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Date:October 2009
Deposited On:21 Feb 2010 16:09
Last Modified:05 Apr 2016 13:59
Publisher:Wiley-Blackwell
ISSN:1552-4973
Publisher DOI:10.1002/jbm.b.31379
Other Identification Number:10.1002/jbm.b.31379
Permanent URL: http://doi.org/10.5167/uzh-31859

Download

[img]Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations