UZH-Logo

Excited state geometries within time-dependent and restricted open-shell density functional theories


Odelius, M; Laikov, D; Hutter, J (2003). Excited state geometries within time-dependent and restricted open-shell density functional theories. Journal of Molecular Structure THEOCHEM, 630(1-3):163-175.

Abstract

Singlet excited state geometries of a set of medium sized molecules with different characteristic lowest excitations are studied. Geometry optimizations of excited states are performed with two closely related restricted open-shell Kohn-Sham methods and within linear response to time-dependent density functional theory. The results are compared to wave-function based methods. Excitation energies (vertical and adiabatic) calculated from the open-shell methods show systematic errors depending on the type of excitation. However, for all states accessible by the restricted methods a good agreement for the geometries with time-dependent density functional theory and wave-function based methods is found. An analysis of the energy with respect to the mixing angle for the singly occupied orbitals reveals that some states (mostly {[}n --> pi{*}]) are stable when symmetry constraints are relaxed and others (mostly [pi --> pi{*}]) are instable. This has major implications on the applicability of the restricted open-shell methods in molecular dynamics simulations.

Singlet excited state geometries of a set of medium sized molecules with different characteristic lowest excitations are studied. Geometry optimizations of excited states are performed with two closely related restricted open-shell Kohn-Sham methods and within linear response to time-dependent density functional theory. The results are compared to wave-function based methods. Excitation energies (vertical and adiabatic) calculated from the open-shell methods show systematic errors depending on the type of excitation. However, for all states accessible by the restricted methods a good agreement for the geometries with time-dependent density functional theory and wave-function based methods is found. An analysis of the energy with respect to the mixing angle for the singly occupied orbitals reveals that some states (mostly {[}n --> pi{*}]) are stable when symmetry constraints are relaxed and others (mostly [pi --> pi{*}]) are instable. This has major implications on the applicability of the restricted open-shell methods in molecular dynamics simulations.

Citations

16 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

127 downloads since deposited on 18 Mar 2009
35 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Uncontrolled Keywords:Excitation energies; Density functional theory; Molecular dynamics
Language:English
Date:July 2003
Deposited On:18 Mar 2009 14:50
Last Modified:05 Apr 2016 12:26
Publisher:Elsevier
ISSN:0166-1280
Publisher DOI:10.1016/S0166-1280(03)00152-0
Permanent URL: http://doi.org/10.5167/uzh-3189

Download

[img]
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher
[img]
Filetype: PDF - Registered users only
Size: 1MB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations