Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, 5.7.2016, 07:00-08:00

Maintenance work on ZORA and JDB on Tuesday, 5th July, 07h00-08h00. During this time there will be a brief unavailability for about 1 hour. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-31932

Steimer, A; Maass, W; Rodney, D (2009). Belief propagation in networks of spiking neurons. Neural Computation, 21(9):2502-2523.

Accepted Version
View at publisher


From a theoretical point of view, statistical inference is an attractive model of brain operation. However, it is unclear how to implement these inferential processes in neuronal networks. We offer a solution to this problem by showing in detailed simulations how the belief propagation algorithm on a factor graph can be embedded in a network of spiking neurons. We use pools of spiking neurons as the function nodes of the factor graph. Each pool gathers “messages” in the form of population activities from its input nodes and combines them through its network dynamics. Each of the various output messages to be transmitted over the edges of the graph is computed by a group of readout neurons that feed in their respective destination pools. We use this approach to implement two examples of factor graphs. The first example, drawn from coding theory, models the transmission of signals through an unreliable channel and demonstrates the principles and generality of our network approach. The second, more applied example is of a psychophysical mechanism in which visual cues are used to resolve hypotheses about the interpretation of an object's shape and illumination. These two examples, and also a statistical analysis, demonstrate good agreement between the performance of our networks and the direct numerical evaluation of belief propagation.


21 citations in Web of Science®
25 citations in Scopus®
Google Scholar™



81 downloads since deposited on 28 Feb 2010
23 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Date:September 2009
Deposited On:28 Feb 2010 09:33
Last Modified:05 Apr 2016 13:59
Publisher:MIT Press
Additional Information:Copyright: MIT Press
Publisher DOI:10.1162/neco.2009.08-08-837
Related URLs:http://www.ini.uzh.ch/node/20239 (Organisation)
PubMed ID:19548806

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page