UZH-Logo

Classical polarizable force fields parametrized from ab initio calculations


Tabacchi, G; Mundy, C J; Hutter, J; Parrinello, M (2002). Classical polarizable force fields parametrized from ab initio calculations. Journal of Chemical Physics, 117(4):1416-1433.

Abstract

A computationally efficient molecular dynamics implementation of a polarizable force field parametrized from ab initio data is presented. Our formulation, based on a second-order expansion of the energy density, models the density response using Gaussian basis functions derived from density functional linear response theory. Polarization effects are described by the time evolution of the basis function coefficients propagated via an extended Lagrangian formalism. We have devised a general protocol for the parametrization of the force field. We will show that a single parametrization of the model can describe the polarization effects of LiI in the condensed phase.

A computationally efficient molecular dynamics implementation of a polarizable force field parametrized from ab initio data is presented. Our formulation, based on a second-order expansion of the energy density, models the density response using Gaussian basis functions derived from density functional linear response theory. Polarization effects are described by the time evolution of the basis function coefficients propagated via an extended Lagrangian formalism. We have devised a general protocol for the parametrization of the force field. We will show that a single parametrization of the model can describe the polarization effects of LiI in the condensed phase.

Citations

47 citations in Web of Science®
49 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

6 downloads since deposited on 25 Mar 2009
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2002
Deposited On:25 Mar 2009 16:32
Last Modified:01 Jun 2016 13:01
Publisher:American Institute of Physics
ISSN:0021-9606
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:10.1063/1.1487822
Permanent URL: http://doi.org/10.5167/uzh-3195

Download

[img]
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations