UZH-Logo

Maintenance Infos

Structural and electronic properties of co-corrole, co-corrin, and co-porphyrin


Rovira, C; Kunc, K; Hutter, J; Parrinello, M (2001). Structural and electronic properties of co-corrole, co-corrin, and co-porphyrin. Inorganic Chemistry, 40(1):11-17.

Abstract

A quantitative study of the structure and electronic properties of Co-corrole, Co-corrin. and Co-porphyrin, using density functional theory, is reported. The structure of each macrocycle is optimized, with no symmetry constraints, by considering different spin states. The ground-state structures and spin states (S = 1 for Co-corrole, S = 0 for Co-corrin and S = 1/2 for Co-porphyrin) are in good agreement with the experimental data available. The trends in the sizes of the coordination cavities upon varying the inner metal atom and/or the macrocycle are analyzed and compared with those for the Fe-porphyrin we studied previously. Our results reveal that most of the distortion of the Co-corrin core in the B-12. coenzyme is due to the inherent properties of Co-corrin. Quite different behaviors are found between corrinoids and porphyrins upon varying the spin state. While an increase in the metal-nitrogen (M-N) distance with spin state occurs in the porphyrins, the corrinoids show little variation in the M-N distance and, in some cases, undergo small structural changes in the ring structure. These results aid in understanding the often discussed question of why nature has chosen corrin/porphyrin for carrying out the particular biological functions identified in the B-12 coenzyme.

A quantitative study of the structure and electronic properties of Co-corrole, Co-corrin. and Co-porphyrin, using density functional theory, is reported. The structure of each macrocycle is optimized, with no symmetry constraints, by considering different spin states. The ground-state structures and spin states (S = 1 for Co-corrole, S = 0 for Co-corrin and S = 1/2 for Co-porphyrin) are in good agreement with the experimental data available. The trends in the sizes of the coordination cavities upon varying the inner metal atom and/or the macrocycle are analyzed and compared with those for the Fe-porphyrin we studied previously. Our results reveal that most of the distortion of the Co-corrin core in the B-12. coenzyme is due to the inherent properties of Co-corrin. Quite different behaviors are found between corrinoids and porphyrins upon varying the spin state. While an increase in the metal-nitrogen (M-N) distance with spin state occurs in the porphyrins, the corrinoids show little variation in the M-N distance and, in some cases, undergo small structural changes in the ring structure. These results aid in understanding the often discussed question of why nature has chosen corrin/porphyrin for carrying out the particular biological functions identified in the B-12 coenzyme.

Citations

61 citations in Web of Science®
62 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 25 Mar 2009
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2001
Deposited On:25 Mar 2009 16:17
Last Modified:05 Apr 2016 12:26
Publisher:American Chemical Society
ISSN:0020-1669
Publisher DOI:10.1021/ic000143m
PubMed ID:11195367
Permanent URL: http://doi.org/10.5167/uzh-3198

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations