Quick Search:

uzh logo
Browse by:

Zurich Open Repository and Archive

Maintenance: Tuesday, July the 26th 2016, 07:00-10:00

ZORA's new graphical user interface will be relaunched (For further infos watch out slideshow ZORA: Neues Look & Feel). There will be short interrupts on ZORA Service between 07:00am and 10:00 am. Please be patient.

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-32022

Landis, F; Ott, T; Stoop, R (2010). Hebbian self-organizing integrate-and-fire networks for data clustering. Neural Computation, 22(1):273-288.

PDF (Supplementary material)
View at publisher


We propose a Hebbian learning-based data clustering algorithm using spiking neurons. The algorithm is capable of distinguishing between clusters and noisy background data and finds an arbitrary number of clusters of arbitrary shape. These properties render the approach particularly useful for visual scene segmentation into arbitrarily shaped homogeneous regions. We present several application examples, and in order to highlight the advantages and the weaknesses of our method, we systematically compare the results with those from standard methods such as the k-means and Ward's linkage clustering. The analysis demonstrates that not only the clustering ability of the proposed algorithm is more powerful than those of the two concurrent methods, the time complexity of the method is also more modest than that of its generally used strongest competitor.


6 citations in Web of Science®
8 citations in Scopus®
Google Scholar™



37 downloads since deposited on 28 Feb 2010
13 downloads since 12 months

Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Deposited On:28 Feb 2010 10:00
Last Modified:05 Apr 2016 14:00
Publisher:MIT Press
Additional Information:Copyright: MIT Press
Publisher DOI:10.1162/neco.2009.12-08-926
Related URLs:http://www.ini.uzh.ch/node/22238 (Organisation)
PubMed ID:19764879

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page