Quick Search:

uzh logo
Browse by:
bullet
bullet
bullet
bullet

Zurich Open Repository and Archive 

Permanent URL to this publication: http://dx.doi.org/10.5167/uzh-32069

Adén, D; Wilkinson, M I; Read, J I; Feltzing, S; Koch, A; Gilmore, G F; Grebel, E K; Lundström, I (2009). A new low mass for the Hercules dSph: the end of a common mass scale for the dwarfs? Astrophysical Journal Letters, 706(1):L150-L154.

[img]PDF - Registered users only
1281Kb
[img]
Preview
Accepted Version
PDF
1238Kb

Abstract

We present a new mass estimate for the Hercules dwarf spheroidal (dSph) galaxy, based on the revised velocity dispersion obtained by Adén et al. The removal of a significant foreground contamination using newly acquired Strömgren photometry has resulted in a reduced velocity dispersion. Using this new velocity dispersion of 3.72 ± 0.91 km s-1, we find a mass of M 300 = 1.9+1.1 –0.8 × 106 M sun within the central 300 pc, which is also the half-light radius, and a mass of M 433 = 3.7+2.2 –1.6 × 106 M sun within the reach of our data to 433 pc, significantly lower than previous estimates. We derive an overall mass-to-light ratio of M 433/L = 103+83 –48[M sun/L sun]. Our mass estimate calls into question recent claims of a common mass scale for dSph galaxies. Additionally, we find tentative evidence for a velocity gradient in our kinematic data of 16 ± 3 km s–1 kpc–1, and evidence of an asymmetric extension in the light distribution at ~0.5 kpc. We explore the possibility that these features are due to tidal interactions with the Milky Way. We show that there is a self-consistent model in which Hercules has an assumed tidal radius of rt = 485 pc, an orbital pericenter of rp = 18.5 ± 5 kpc, and a mass within rt of $M_{{\rm tid},r_t}=5.2_{-2.7}^{+2.7} \times 10^6\,M_\odot$. Proper motions are required to test this model. Although we cannot exclude models in which Hercules contains no dark matter, we argue that Hercules is more likely to be a dark-matter-dominated system that is currently experiencing some tidal disturbance of its outer parts.

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Theoretical Physics
DDC:530 Physics
Language:English
Date:2009
Deposited On:25 Feb 2010 17:13
Last Modified:23 Nov 2012 16:12
Publisher:Institute of Physics Publishing
ISSN:2041-8205
Publisher DOI: 10.1088/0004-637X/706/1/L150
Related URLs:http://arxiv.org/abs/0910.1348
Citations:Google Scholar™

Users (please log in): suggest update or correction for this item

Repository Staff Only: item control page