UZH-Logo

Maintenance Infos

The representation of objects in the human occipital and temporal cortex


Ishai, A; Ungerleider, L G; Martin, A; Haxby, J V (2000). The representation of objects in the human occipital and temporal cortex. Journal of Cognitive Neuroscience, 12(Suppl ):35-51.

Abstract

Recently, we identified, using fMRI, three bilateral regions in the ventral temporal cortex that responded preferentially to faces, houses, and chairs [Ishai, A., Ungerleider, L. G., Martin, A., Schouten, J. L., & Haxby, J. V. (1999). Distributed representation of objects in the human ventral visual pathway. Proceedings of the National Academy of Sciences, U.S.A., 96, 9379--9384]. Here, we report differential patterns of activation, similar to those seen in the ventral temporal cortex, in bilateral regions of the ventral occipital cortex. We also found category-related responses in the dorsal occipital cortex and in the superior temporal sulcus. Moreover, rather than activating discrete, segregated areas, each category was associated with its own differential pattern of response across a broad expanse of cortex. The distributed patterns of response were similar across tasks (passive viewing, delayed matching) and presentation formats (photographs, line drawings). We propose that the representation of objects in the ventral visual pathway, including both occipital and temporal regions, is not restricted to small, highly selective patches of cortex but, instead, is a distributed representation of information about object form. Within this distributed system, the representation of faces appears to be less extensive as compared to the representations of nonface objects.

Abstract

Recently, we identified, using fMRI, three bilateral regions in the ventral temporal cortex that responded preferentially to faces, houses, and chairs [Ishai, A., Ungerleider, L. G., Martin, A., Schouten, J. L., & Haxby, J. V. (1999). Distributed representation of objects in the human ventral visual pathway. Proceedings of the National Academy of Sciences, U.S.A., 96, 9379--9384]. Here, we report differential patterns of activation, similar to those seen in the ventral temporal cortex, in bilateral regions of the ventral occipital cortex. We also found category-related responses in the dorsal occipital cortex and in the superior temporal sulcus. Moreover, rather than activating discrete, segregated areas, each category was associated with its own differential pattern of response across a broad expanse of cortex. The distributed patterns of response were similar across tasks (passive viewing, delayed matching) and presentation formats (photographs, line drawings). We propose that the representation of objects in the ventral visual pathway, including both occipital and temporal regions, is not restricted to small, highly selective patches of cortex but, instead, is a distributed representation of information about object form. Within this distributed system, the representation of faces appears to be less extensive as compared to the representations of nonface objects.

Citations

199 citations in Web of Science®
217 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

54 downloads since deposited on 13 Mar 2009
27 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Neuroradiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2000
Deposited On:13 Mar 2009 14:26
Last Modified:05 Apr 2016 12:26
Publisher:MIT Press
ISSN:0898-929X
Additional Information:Copyright: MIT Press
Publisher DOI:https://doi.org/10.1162/089892900564055
PubMed ID:11506646

Download

[img]
Preview
Filetype: PDF
Size: 2MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations