UZH-Logo

Lack of mismatch correction facilitates genome evolution in mycobacteria


Springer, B; Sander, P; Sedlacek, L; Hardt, W D; Mizrahi, V; Schärer, P; Böttger, E C (2004). Lack of mismatch correction facilitates genome evolution in mycobacteria. Molecular Microbiology, 53(6):1601-1609.

Abstract

In silico genome sequence analyses suggested that mycobacteria are devoid of the highly conserved mutLS-based post-replicative mismatch repair system. Here, we present the first biological evidence for the lack of a classical mismatch repair function in mycobacteria. We found that frameshifts, but not general mutation rates are unusually high in Mycobacterium smegmatis. However, despite the absence of mismatch correction, M. smegmatis establishes a strong barrier to recombination between homeologous DNA sequences. We show that 10-12% of DNA sequence heterology restricts initiation of recombination but not extension of heteroduplex DNA intermediates. Together, the lack of mismatch correction and a high stringency of initiation of homologous recombination provide an adequate strategy for mycobacterial genome evolution, which occurs by gene duplication and divergent evolution.

In silico genome sequence analyses suggested that mycobacteria are devoid of the highly conserved mutLS-based post-replicative mismatch repair system. Here, we present the first biological evidence for the lack of a classical mismatch repair function in mycobacteria. We found that frameshifts, but not general mutation rates are unusually high in Mycobacterium smegmatis. However, despite the absence of mismatch correction, M. smegmatis establishes a strong barrier to recombination between homeologous DNA sequences. We show that 10-12% of DNA sequence heterology restricts initiation of recombination but not extension of heteroduplex DNA intermediates. Together, the lack of mismatch correction and a high stringency of initiation of homologous recombination provide an adequate strategy for mycobacterial genome evolution, which occurs by gene duplication and divergent evolution.

Citations

50 citations in Web of Science®
53 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 22 Aug 2008
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Microbiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Date:August 2004
Deposited On:22 Aug 2008 12:31
Last Modified:05 Apr 2016 12:26
Publisher:Wiley-Blackwell
ISSN:0950-382X
Publisher DOI:10.1111/j.1365-2958.2004.04231.x
PubMed ID:15341642
Permanent URL: http://doi.org/10.5167/uzh-3234

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations