UZH-Logo

Maintenance Infos

Highly convenient, clean, fast, and reliable Sonogashira coupling reactions promoted by aminophosphine-based pincer complexes of palladium performed under additive- and amine-free reaction conditions


Bolliger, J L; Frech, C M (2009). Highly convenient, clean, fast, and reliable Sonogashira coupling reactions promoted by aminophosphine-based pincer complexes of palladium performed under additive- and amine-free reaction conditions. Advanced Synthesis & Catalysis, 351(6):891-902.

Abstract

Sequential addition of 1,1,1-phosphinetriyltripiperidine and 1,3-diaminobenzene or resorcinol to toluene solutions of (cyclooctadiene)palladium dichloride [Pd(cod)(Cl)2] under nitrogen in one pot almost quantitatively yielded the aminophosphine-based pincer complexes {[C6H3-2,6-(XP{piperidinyl}2)2]Pd(Cl)} (X=NH 1; X=O 2). Complex 1 (and to a minor extent 2) proved to be efficient Sonogashira catalysts, which allow the quantitative coupling of various electronically deactivated and/or sterically hindered and functionalized aryl iodides and aryl bromides with several alkynes as coupling partners within very short reaction times and low catalyst loadings. Importantly, in contrast to most of the Sonogashira catalysts, which either are both air- and moisture-sensitive and/or require the addition of co-catalysts, such as copper(I) iodide [CuI], for example, or a large excess of an amine, the coupling reactions were carried out without the use of amines, co-catalysts or other aditives and without exclusion of air and moisture. Moreover, the desired products were exclusively formed (no side-products were detected) without employing an excess of one of the substrates. Ethylene glycol and potassium phosphate (K3PO4) were found to be the ideal solvent and base for this transformation. Experimental observations strongly indicate that palladium nanoparticles are not the catalytically active form of 1 and 2. On the other hand, their transformation into another homogeneous catalytically active species cannot be excluded.

Sequential addition of 1,1,1-phosphinetriyltripiperidine and 1,3-diaminobenzene or resorcinol to toluene solutions of (cyclooctadiene)palladium dichloride [Pd(cod)(Cl)2] under nitrogen in one pot almost quantitatively yielded the aminophosphine-based pincer complexes {[C6H3-2,6-(XP{piperidinyl}2)2]Pd(Cl)} (X=NH 1; X=O 2). Complex 1 (and to a minor extent 2) proved to be efficient Sonogashira catalysts, which allow the quantitative coupling of various electronically deactivated and/or sterically hindered and functionalized aryl iodides and aryl bromides with several alkynes as coupling partners within very short reaction times and low catalyst loadings. Importantly, in contrast to most of the Sonogashira catalysts, which either are both air- and moisture-sensitive and/or require the addition of co-catalysts, such as copper(I) iodide [CuI], for example, or a large excess of an amine, the coupling reactions were carried out without the use of amines, co-catalysts or other aditives and without exclusion of air and moisture. Moreover, the desired products were exclusively formed (no side-products were detected) without employing an excess of one of the substrates. Ethylene glycol and potassium phosphate (K3PO4) were found to be the ideal solvent and base for this transformation. Experimental observations strongly indicate that palladium nanoparticles are not the catalytically active form of 1 and 2. On the other hand, their transformation into another homogeneous catalytically active species cannot be excluded.

Citations

45 citations in Web of Science®
46 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2009
Deposited On:03 Mar 2010 09:56
Last Modified:05 Apr 2016 14:01
Publisher:Wiley-Blackwell
ISSN:1615-4150
Publisher DOI:10.1002/adsc.200900112

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations