UZH-Logo

Maintenance Infos

The transcription factor Fra-2 regulates the production of extracellular matrix in systemic sclerosis


Reich, N; Maurer, B; Akhmetshina, A; Venalis, P; Dees, C; Zerr, P; Palumbo, K; Zwerina, J; Nevskaya, T; Gay, S; Distler, O; Schett, G; Distler, J H W (2010). The transcription factor Fra-2 regulates the production of extracellular matrix in systemic sclerosis. Arthritis and Rheumatism, 62(1):280-290.

Abstract

OBJECTIVE: Fra-2 belongs to the activator protein 1 family of transcription factors. Mice transgenic for Fra-2 develop a systemic fibrotic disease with vascular manifestations similar to those of systemic sclerosis (SSc). The aim of the present study was to investigate whether Fra-2 plays a role in the pathogenesis of SSc and to identify the molecular mechanisms by which Fra-2 induces fibrosis. METHODS: Dermal thickness and the number of myofibroblasts were determined in skin sections from Fra-2-transgenic and wild-type mice. The expression of Fra-2 in SSc patients and in animal models of SSc was analyzed by real-time polymerase chain reaction and immunohistochemistry. Fra-2, transforming growth factor beta (TGFbeta), and ERK signaling in SSc fibroblasts were inhibited using small interfering RNA, neutralizing antibodies, and small-molecule inhibitors. RESULTS: Fra-2-transgenic mice developed a skin fibrosis with increases in dermal thickness and increased myofibroblast differentiation starting at age 12 weeks. The expression of Fra-2 was up-regulated in SSc patients and in different mouse models of SSc. Stimulation with TGFbeta and platelet-derived growth factor (PDGF) significantly increased the expression of Fra-2 in SSc fibroblasts and induced DNA binding of Fra-2 in an ERK-dependent manner. Knockdown of Fra-2 potently reduced the stimulatory effects of TGFbeta and PDGF and decreased the release of collagen from SSc fibroblasts. CONCLUSION: We demonstrate that Fra-2 is overexpressed in SSc and acts as a novel downstream mediator of the profibrotic effects of TGFbeta and PDGF. Since transgenic overexpression of Fra-2 causes not only fibrosis but also vascular disease, Fra-2 might be an interesting novel candidate for molecular-targeted therapies for SSc.

OBJECTIVE: Fra-2 belongs to the activator protein 1 family of transcription factors. Mice transgenic for Fra-2 develop a systemic fibrotic disease with vascular manifestations similar to those of systemic sclerosis (SSc). The aim of the present study was to investigate whether Fra-2 plays a role in the pathogenesis of SSc and to identify the molecular mechanisms by which Fra-2 induces fibrosis. METHODS: Dermal thickness and the number of myofibroblasts were determined in skin sections from Fra-2-transgenic and wild-type mice. The expression of Fra-2 in SSc patients and in animal models of SSc was analyzed by real-time polymerase chain reaction and immunohistochemistry. Fra-2, transforming growth factor beta (TGFbeta), and ERK signaling in SSc fibroblasts were inhibited using small interfering RNA, neutralizing antibodies, and small-molecule inhibitors. RESULTS: Fra-2-transgenic mice developed a skin fibrosis with increases in dermal thickness and increased myofibroblast differentiation starting at age 12 weeks. The expression of Fra-2 was up-regulated in SSc patients and in different mouse models of SSc. Stimulation with TGFbeta and platelet-derived growth factor (PDGF) significantly increased the expression of Fra-2 in SSc fibroblasts and induced DNA binding of Fra-2 in an ERK-dependent manner. Knockdown of Fra-2 potently reduced the stimulatory effects of TGFbeta and PDGF and decreased the release of collagen from SSc fibroblasts. CONCLUSION: We demonstrate that Fra-2 is overexpressed in SSc and acts as a novel downstream mediator of the profibrotic effects of TGFbeta and PDGF. Since transgenic overexpression of Fra-2 causes not only fibrosis but also vascular disease, Fra-2 might be an interesting novel candidate for molecular-targeted therapies for SSc.

Citations

40 citations in Web of Science®
43 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Rheumatology Clinic and Institute of Physical Medicine
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2010
Deposited On:09 Mar 2010 14:25
Last Modified:05 Apr 2016 14:02
Publisher:Wiley-Blackwell
ISSN:0004-3591
Publisher DOI:https://doi.org/10.1002/art.25056
PubMed ID:20039427

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations