UZH-Logo

Maintenance Infos

Competition among tadpoles of coexisting hemiclones of hybridogenetic Rana esculenta: support for the frozen niche variation model.


Semlitsch, R S; Hotz, H; Guex, G D (1997). Competition among tadpoles of coexisting hemiclones of hybridogenetic Rana esculenta: support for the frozen niche variation model. Evolution, 51(4):1249-1261.

Abstract

Vertebrate animals reproducing without genetic recombination typically are hybrids, which have large ranges, are locally abundant, and live in disturbed or harsh habitats. This holds for the hemiclonal hybridogenetic frog Rana esculenta: it is widespread in Europe and commonly is found in disturbed habitats such as gravel pits. We hypothesize that its widespread occurrence may either be the result of natural selection for a single hemiclone acting as a broadly adapted “general-purpose” genotype, or of interclonal selection, which maintains multiple hemiclones that each are relatively narrowly adapted and perform differently across environments, that is, the Frozen Niche Variation model. We tested these competing hypotheses using 1000-L outdoor artificial ponds to rear tadpoles of the parental species (Rana lessonae [LL] and Rana ridibunda [RR]) alone, and each of three hemiclones of Rana esculenta (GUT1, GUT2, GUT3) alone, and in mixed hemiclonal populations from hatching to metamorphosis. Tadpoles of three coexisting hemiclones from a single natural population (near Gütighausen, Switzerland) were reared in both two- and three-way mixtures in equal total numbers at high and low density. For each species and hemiclone, the proportion of tadpoles metamorphosing decreased as the density of tadpoles increased, with the three hemiclones spanning the range of values exhibited by the two parental species. LL and GUT1 tadpoles produced the highest proportion of metamorphs, whereas tadpoles of RR produced the fewest metamorphs at both densities. GUT1 tadpoles also produced the largest metamorphs at low density, GUT2 and GUT3 tadpoles produced smaller metamorphs than did GUT1 tadpoles at the low density, but the three hemiclones did not differ from each other at high density. The parental species (LL and RR) were intermediate in metamorphic size to the hemiclones at low density, but all genotypes converged on a similar size at high density. Length of the larval period also was affected by density, but its effect was dependent on genotype. GUT1 tadpoles had the shortest larval period at the low density, but larval period was longer and not different between GUT1, GUT3, and LL at high density. RR tadpoles had the longest larval period at both densities. The most dramatic results were that three genotypes (GUT1, GUT2, and RR) maintained rank order and increased days to metamorphosis from low to high density, whereas two genotypes (GUT3 and LL) changed rank order and decreased days to metamorphosis from low to high density. Mixtures of hemiclones in two- and three-way combinations facilitated the proportion of tadpoles metamorphosing for GUT1 and GUT2 at both densities, but only at the low density for GUT3 tadpoles. Results from this experiment are incompatible with the General-Purpose Genotype model as a global explanation of hybrid abundance in these frogs. Alternatively, the Frozen Niche Variation prediction of general performance superiority of clonal mixtures relative to single clone populations is strongly supported. The data confirm that fitness advantages of hemiclones change, depending on the environment, such that in temporally and spatially heterogeneous habitats like ponds, frequency-dependent selection among hemiclones may promote coexistence in hemiclonal assemblages. Yet, differential dispersal or colonization ability and historical factors affecting hemiclone distribution may also be important in shaping patterns of clonal coexistence.

Vertebrate animals reproducing without genetic recombination typically are hybrids, which have large ranges, are locally abundant, and live in disturbed or harsh habitats. This holds for the hemiclonal hybridogenetic frog Rana esculenta: it is widespread in Europe and commonly is found in disturbed habitats such as gravel pits. We hypothesize that its widespread occurrence may either be the result of natural selection for a single hemiclone acting as a broadly adapted “general-purpose” genotype, or of interclonal selection, which maintains multiple hemiclones that each are relatively narrowly adapted and perform differently across environments, that is, the Frozen Niche Variation model. We tested these competing hypotheses using 1000-L outdoor artificial ponds to rear tadpoles of the parental species (Rana lessonae [LL] and Rana ridibunda [RR]) alone, and each of three hemiclones of Rana esculenta (GUT1, GUT2, GUT3) alone, and in mixed hemiclonal populations from hatching to metamorphosis. Tadpoles of three coexisting hemiclones from a single natural population (near Gütighausen, Switzerland) were reared in both two- and three-way mixtures in equal total numbers at high and low density. For each species and hemiclone, the proportion of tadpoles metamorphosing decreased as the density of tadpoles increased, with the three hemiclones spanning the range of values exhibited by the two parental species. LL and GUT1 tadpoles produced the highest proportion of metamorphs, whereas tadpoles of RR produced the fewest metamorphs at both densities. GUT1 tadpoles also produced the largest metamorphs at low density, GUT2 and GUT3 tadpoles produced smaller metamorphs than did GUT1 tadpoles at the low density, but the three hemiclones did not differ from each other at high density. The parental species (LL and RR) were intermediate in metamorphic size to the hemiclones at low density, but all genotypes converged on a similar size at high density. Length of the larval period also was affected by density, but its effect was dependent on genotype. GUT1 tadpoles had the shortest larval period at the low density, but larval period was longer and not different between GUT1, GUT3, and LL at high density. RR tadpoles had the longest larval period at both densities. The most dramatic results were that three genotypes (GUT1, GUT2, and RR) maintained rank order and increased days to metamorphosis from low to high density, whereas two genotypes (GUT3 and LL) changed rank order and decreased days to metamorphosis from low to high density. Mixtures of hemiclones in two- and three-way combinations facilitated the proportion of tadpoles metamorphosing for GUT1 and GUT2 at both densities, but only at the low density for GUT3 tadpoles. Results from this experiment are incompatible with the General-Purpose Genotype model as a global explanation of hybrid abundance in these frogs. Alternatively, the Frozen Niche Variation prediction of general performance superiority of clonal mixtures relative to single clone populations is strongly supported. The data confirm that fitness advantages of hemiclones change, depending on the environment, such that in temporally and spatially heterogeneous habitats like ponds, frequency-dependent selection among hemiclones may promote coexistence in hemiclonal assemblages. Yet, differential dispersal or colonization ability and historical factors affecting hemiclone distribution may also be important in shaping patterns of clonal coexistence.

Citations

75 citations in Web of Science®
78 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:07 Faculty of Science > Institute of Zoology (former)
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:1997
Deposited On:11 Feb 2008 12:14
Last Modified:05 Apr 2016 12:13
Publisher:Wiley-Blackwell
ISSN:0014-3820
Publisher DOI:10.2307/2411054
Related URLs:http://links.jstor.org/sici?sici=0014-3820%28199708%2951%3A4%3C1249%3ACATOCH%3E2.0.CO%3B2-I

Download

Full text not available from this repository.View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations