UZH-Logo

Maintenance Infos

Prevalence of TMPRSS2-ERG and SLC45A3-ERG gene fusions in a large prostatectomy cohort


Esgueva, R; Perner, S; Lafargue, C J; Scheble, V; Stephan, C; Lein, M; Fritzsche, F R; Dietel, M; Kristiansen, G; Rubin, M A (2010). Prevalence of TMPRSS2-ERG and SLC45A3-ERG gene fusions in a large prostatectomy cohort. Modern Pathology, (23):539-546.

Abstract

The majority of prostate cancers harbor recurrent gene fusions between the hormone-regulated TMPRSS2 and members of the ETS family of transcription factors, most commonly ERG. Prostate cancer with ERG rearrangements represent a distinct sub-class of tumor based on studies reporting associations with histomorphologic features, characteristic somatic copy number alterations, and gene expression signatures. This study describes the frequency of ERG rearrangement prostate cancer and three 5 prime (5') gene fusion partners (ie, TMPRSS2, SLC45A3, and NDRG1) in a large prostatectomy cohort. ERG gene rearrangements and mechanism of rearrangement, as well as rearrangements of TMPRSS2, SLC45A3, and NDRG1, were assessed using fluorescence in situ hybridization (FISH) on prostate cancer samples from 614 patients treated using radical prostatectomy. ERG rearrangement occurred in 53% of the 540 assessable cases. TMPRSS2 and SLC45A3 were the only 5' partner in 78% and 6% of these ERG rearranged cases, respectively. Interestingly, 11% of the ERG rearranged cases showed concurrent TMPRSS2 and SLC45A3 rearrangements. TMPRSS2 or SLC45A3 rearrangements could not be identified for 5% of the ERG rearranged cases. From these remaining cases we identified one case with NDRG1 rearrangement. We did not observe any associations with pathologic parameters or clinical outcome. This is the first study to describe the frequency of SLC45A3-ERG fusions in a large clinical cohort. Most studies have assumed that all ERG rearranged prostate cancers harbor TMPRSS2-ERG fusions. This is also the first study to report concurrent TMPRSS2 and SLC45A3 rearrangements in the same tumor focus, suggesting additional complexity that had not been previously appreciated. This study has important clinical implications for the development of diagnostic assays to detect ETS rearranged prostate cancer. Incorporation of these less common ERG rearranged prostate cancer fusion assays could further increase the sensitivity of the current PCR-based approaches.

The majority of prostate cancers harbor recurrent gene fusions between the hormone-regulated TMPRSS2 and members of the ETS family of transcription factors, most commonly ERG. Prostate cancer with ERG rearrangements represent a distinct sub-class of tumor based on studies reporting associations with histomorphologic features, characteristic somatic copy number alterations, and gene expression signatures. This study describes the frequency of ERG rearrangement prostate cancer and three 5 prime (5') gene fusion partners (ie, TMPRSS2, SLC45A3, and NDRG1) in a large prostatectomy cohort. ERG gene rearrangements and mechanism of rearrangement, as well as rearrangements of TMPRSS2, SLC45A3, and NDRG1, were assessed using fluorescence in situ hybridization (FISH) on prostate cancer samples from 614 patients treated using radical prostatectomy. ERG rearrangement occurred in 53% of the 540 assessable cases. TMPRSS2 and SLC45A3 were the only 5' partner in 78% and 6% of these ERG rearranged cases, respectively. Interestingly, 11% of the ERG rearranged cases showed concurrent TMPRSS2 and SLC45A3 rearrangements. TMPRSS2 or SLC45A3 rearrangements could not be identified for 5% of the ERG rearranged cases. From these remaining cases we identified one case with NDRG1 rearrangement. We did not observe any associations with pathologic parameters or clinical outcome. This is the first study to describe the frequency of SLC45A3-ERG fusions in a large clinical cohort. Most studies have assumed that all ERG rearranged prostate cancers harbor TMPRSS2-ERG fusions. This is also the first study to report concurrent TMPRSS2 and SLC45A3 rearrangements in the same tumor focus, suggesting additional complexity that had not been previously appreciated. This study has important clinical implications for the development of diagnostic assays to detect ETS rearranged prostate cancer. Incorporation of these less common ERG rearranged prostate cancer fusion assays could further increase the sensitivity of the current PCR-based approaches.

Citations

67 citations in Web of Science®
74 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

3 downloads since deposited on 26 Mar 2010
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Institute of Surgical Pathology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2010
Deposited On:26 Mar 2010 10:17
Last Modified:05 Apr 2016 14:04
Publisher:Nature Publishing Group
ISSN:0893-3952
Publisher DOI:https://doi.org/10.1038/modpathol.2009.193
PubMed ID:20118910
Permanent URL: https://doi.org/10.5167/uzh-33115

Download

[img]
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations